Skip to main content
Log in

Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Green synthetic method is an important process that can be used for the synthesis of iron nanoparticles in the field of nanotechnology because of its characteristics of low cost and high efficiency for industrial large-scale production. In this study, iron oxide nanoparticles (IONPs) were synthesized by a simple bio-reduction method. Aqueous leaf extract of Daphne mezereum was used as a reducing and stabilizing agent. Ultraviolet–visible (UV–vis) absorption spectroscopy was used to monitor the dye removing ability of IONPs. Also, IONPs were characterized by transmission electron microscopy (TEM), particle size analysis (PSA), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), and thermo gravimetric analysis (TGA). The average diameter of the prepared NPs ranged from 6.5 to 14.9 nm with a mean particle size of 9.2 nm. In addition, the synthesized iron nanoparticles were tested for dye removing activities. The decoloration efficiency of INPs catalyzed reaction was about 81% after 6 h. Thus, it could be concluded that D. mezereum aqueous leaf extract can be used efficiently in the production of iron oxide NPs for commercial applications in environmental fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mater. Sci. Eng. C 31(5), 1062–1067 (2011)

    Article  Google Scholar 

  2. D.I. Rinawati, D.P. Sari, B. Purwanggono, A.T. Hermawan, Environmental Impact Analysis of Batik Natural Dyes Using Life Cycle Assessment. In: AIP conference proceedings, AIP Publishing, Melville, NY, p 020044 (2017)

  3. M. Mokhtar, Application of synthetic layered sodium silicate magadiite nanosheets for environmental remediation of methylene blue dye in water. Materials 10, 760 (2017)

    Article  ADS  Google Scholar 

  4. L.E. Cuervo, M.F. Gomes, C.V. Da Silva, A.M. de Freitas, E. Tiburtius, Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process. Environ Sci Pollut Res Int 24(7), 6126–6134 (2017)

    Article  Google Scholar 

  5. J. Breneman, H. Blasinski, J.E. Farrell, The Color of Water: Using Underwater Photography to Estimatewater Quality. In: Digital Photography, p. 90230R (2014)

  6. Z.-M. Ni, S.-J. Xia, L.-G. Wang, F.-F. Xing, G.-X. Pan, Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies. J. Colloid Interface Sci. 316(2), 284–291 (2007)

    Article  ADS  Google Scholar 

  7. F.M.D. Chequer, T.M. Lizier, R. de Felício, M.V.B. Zanoni, H.M. Debonsi, N.P. Lopes, D.P. de Oliveira, The azo dye Disperse Red 13 and its oxidation and reduction products showed mutagenic potential. Toxicol. In Vitro 29(7), 1906–1915 (2015)

    Article  Google Scholar 

  8. B.J. Brüschweiler, C. Merlot, Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul. Toxicol. Pharmacol. 88, 214–226 (2017)

    Article  Google Scholar 

  9. T.N.J.I. Edison, R. Atchudan, M.G. Sethuraman, Y.R. Lee, Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. J. Photochem. Photobiol. B 162, 604–610 (2016)

    Article  Google Scholar 

  10. V. Martínek, M. Stiborová, Metabolism of carcinogenic azo dye Sudan I by rat, rabbit, minipig and human hepatic microsomes. Collect. Czechoslov. Chem. Commun. 67(12), 1883–1898 (2002)

    Article  Google Scholar 

  11. K. Lokesh, R. Sivakiran, Biological methods of dye removal from textile effluents—a review. J. Biochem. Technol. 3(5), 177–180 (2014)

    Google Scholar 

  12. X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanos. Res. Lett. 12(1), 143 (2017)

    Article  ADS  Google Scholar 

  13. G. Lucena, L. de Lima, L. Honório, A. de Oliveira, R. Tranquilim, E. Longo, A. de Souza, A.d..S. Maia, I. dos Santos, CaSnO 3 obtained by modified Pechini method applied in the photocatalytic degradation of an azo dye. Cerâmica 63(368), 536–541 (2017)

    Article  Google Scholar 

  14. E. Kusmierek, P. Mierczynski, A. Kedziora, M. Nowosielska, W. Maniukiewicz, S. Vorobyov, R. Vitkovskaya, T.P. Maniecki, Photocatalytic degradation of an azo dye over novel monometallic copper catalysts supported on fibreglass. Catal. Lett. 147(9), 2448–2461 (2017)

    Article  Google Scholar 

  15. G.M.D. Ferreira, G.M.D. Ferreira, M.C. Hespanhol, J. de Paula Rezende, A.C. dos Santos Pires, L.V.A. Gurgel, L.H.M. da Silva, Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: a thermodynamic study. Colloids Surf. A 529, 531–540 (2017)

    Article  Google Scholar 

  16. E. Ghasemian, Z. Palizban, Comparisons of azo dye adsorptions onto activated carbon and silicon carbide nanoparticles loaded on activated carbon. Int. J. Environ. Sci. Technol. 13(2), 501–512 (2016)

    Article  Google Scholar 

  17. R. Khan, U.C. Banerjee, Decolorization of Azo Dyes by Immobilized Bacteria. Biodegradation of Azo Dyes (Springer, Berlin, 2010), pp. 73–84

    Chapter  Google Scholar 

  18. Z.M. Redha, H.A. Yusuf, H.A. Ahmed, P.R. Fielden, N.J. Goddard, S.J. Baldock, A miniaturized injection-moulded flow-cell with integrated conducting polymer electrodes for on-line electrochemical degradation of azo dye solutions. Microelectron. Eng. 169, 16–23 (2017)

    Article  Google Scholar 

  19. Z.U.H. Khan, A. Khan, Y. Chen, A. ullah Khan, N.S. Shah, N. Muhammad, B. Murtaza, K. Tahir, F.U. Khan, P. Wan, Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic azo dyes using AuNPs/GC as modified paste electrode. J. Alloy. Compd. 725, 869–876 (2017)

    Article  Google Scholar 

  20. M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J. Hazard. Mater. 181(1), 1039–1050 (2010)

    Article  Google Scholar 

  21. B. Maddah, A simple colorimetric kit for determination of ketamine hydrochloride in water samples. Anal. Methods 7(24), 10364–10370 (2015)

    Article  Google Scholar 

  22. A. Ebrahiminezhad, S. Taghizadeh, A. Berenjian, A. Rahi, Y. Ghasemi, Synthesis and characterization of silver nanoparticles with natural carbohydrate capping using Zataria multiflora. Adv. Mater. Lett. 7(11), 939–944 (2016)

    Article  Google Scholar 

  23. A. Ebrahiminezhad, S. Taghizadeh, Y. Ghasemi, Green synthesis of silver nanoparticles using Mediterranean Cypress (Cupressus sempervirens) leaf extract. Am. J. Biochem. Biotechnol. 13(1), 1–6 (2017)

    Article  Google Scholar 

  24. A. Ebrahiminezhad, S. Taghizadeh, A. Berenjian, F. Heidaryan Naeini, Y. Ghasemi, Green synthesis of silver nanoparticles capped with natural carbohydrates using ephedra intermedia. Nanosci Nanotechnol Asia 7(1), 104–112 (2017)

    Google Scholar 

  25. M. Cao, Z. Li, J. Wang, W. Ge, T. Yue, R. Li, V.L. Colvin, W.Y. William, Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Technol. 27(1), 47–56 (2012)

    Article  Google Scholar 

  26. A.K.A. Silva, A. Espinosa, J. Kolosnjaj-Tabi, C. Wilhelm, F. Gazeau, Medical applications of iron oxide nanoparticles. Iron Oxides Nat. Appl., 425–472 (2016)

  27. M. Hasanzadeh, N. Shadjou, M. de la Guardia, Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends Anal. Chem. 72, 1–9 (2015)

    Article  Google Scholar 

  28. Y. Wang, H. Zhao, G. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants. Appl. Catal. B 164, 396–406 (2015)

    Article  Google Scholar 

  29. J.M. Walker, J.M. Zaleski, A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis. Nanoscale 8(3), 1535–1544 (2016)

    Article  ADS  Google Scholar 

  30. W.J. Yu, C. Liu, L. Zhang, P.X. Hou, F. Li, B. Zhang, H.M. Cheng, Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv. Sci. 3, (10) (2016)

    Google Scholar 

  31. A. Massoud, H. Mahmoud, Evaluation of hybrid polymeric resin containing nanoparticles of iron oxide for selective separation of In (III) from Ga (III). J. Inorg. Organomet. Polym Mater. 27(6), 1806–1815 (2017)

    Article  Google Scholar 

  32. Y. Bentahir, S. Elmarhoum, R. Salghi, M. Algarra, A. Ríos, M. Zougagh, Dispersed synthesis of uniform Fe3O4 magnetic nanoparticles via in situ decomposition of iron precursor along cotton fibre for Sudan dyes analysis in food samples. Food Addit. Contam. Part A 34(11), 1853–1862 (2017)

    Article  Google Scholar 

  33. A. Ebrahiminezhad, A. Zare-Hoseinabadi, A.K. Sarmah, S. Taghizadeh, Y. Ghasemi, A. Berenjian, Plant-mediated synthesis and applications of iron nanoparticles. Mol. Biotechnol. 60(2), 1–15 (2017)

    Google Scholar 

  34. D. Mishra, H. Zabel, S. Ulyanov, V. Romanov, V. Uzdin, Template assisted self-assembly of iron oxide nanoparticles: an X-ray structural analysis. J. Appl. Phys. 115(5), 054104 (2014)

    Article  ADS  Google Scholar 

  35. B. Palagiri, R. Chintaparty, R.R. Nagireddy, V.S.R. Imma Reddy, Influence of synthesis conditions on structural, optical and magnetic properties of iron oxide nanoparticles prepared by hydrothermal method. Phase Transit. 90(6), 578–589 (2017)

    Article  Google Scholar 

  36. S. Futko, B. Shulitskii, V. Labunov, E. Ermolaeva, Simulation of the kinetics of growth of iron nanoparticles in the process of chemical vapor deposition of hydrocarbons with injection of ferrocene for the synthesis of carbon-nanotube arrays. J. Eng. Phys. Thermophys. 88(6), 1432–1441 (2015)

    Article  Google Scholar 

  37. Z.N. Kayani, S. Arshad, S. Riaz, S. Naseem, Synthesis of iron oxide nanoparticles by sol–gel technique and their characterization. IEEE Trans. Magn. 50(8), 1–4 (2014)

    Google Scholar 

  38. A. Taufiq, S. Pratapa, M. Zainuri, Various magnetic properties of magnetite nanoparticles synthesized from iron-sands by coprecipitation method at room temperature, Mater. Sci. Forum 827, 229 (2015)

    Article  Google Scholar 

  39. N.J. Orsini, B. Babić-Stojić, V. Spasojević, M. Calatayud, N. Cvjetićanin, G. Goya, Magnetic and power absorption measurements on iron oxide nanoparticles synthesized by thermal decomposition of Fe (acac) 3. J. Magn. Magn. Mater. 449, 286–296 (2018)

    Article  ADS  Google Scholar 

  40. G. Kastrinaki, S. Lorentzou, G. Karagiannakis, M. Rattenbury, J. Woodhead, A. Konstandopoulos, Parametric synthesis study of iron based nanoparticles via aerosol spray pyrolysis route. J. Aerosol Sci. 115, 96–107 (2018)

    Article  ADS  Google Scholar 

  41. A. Ebrahiminezhad, A. Zare-Hoseinabadi, A. Berenjian, Y. Ghasemi, Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process. Synth. 6, 469–475 (2017)

    Google Scholar 

  42. A. Ebrahiminezhad, M. Zare, S. Kiyanpour, A. Berenjian, S.V. Niknezhad, Y. Ghasemi, Biosynthesis of xanthan gum coated iron nanoparticles by using Xanthomonas campestris. IET Nanobiotechnol. 12, 254–258 (2017)

    Article  Google Scholar 

  43. M. Seifan, A. Ebrahiminezhad, Y. Ghasemi, A.K. Samani, A. Berenjian, Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete. Appl. Microbiol. Biotechnol. 102, 1–10 (2017)

    Google Scholar 

  44. R. Dinali, A. Ebrahiminezhad, M. Manley-Harris, Y. Ghasemi, A. Berenjian, Iron oxide nanoparticles in modern microbiology and biotechnology. Crit. Rev. Microbiol. 43(4), 493–507 (2017)

    Article  Google Scholar 

  45. S. Kianpour, A. Ebrahiminezhad, M. Mohkam, A.M. Tamaddon, A. Dehshahri, R. Heidari, Y. Ghasemi, Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. J. Basic Microbiol. 57(2), 132–140 (2017)

    Article  Google Scholar 

  46. Y.L. Raĭkher, V. Stepanov, S. Stolyar, V. Ladygina, D. Balaev, L. Ishchenko, M. Balasoiu, Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca. Phys. Solid State 52(2), 298–305 (2010)

    Article  ADS  Google Scholar 

  47. S. Saif, A. Tahir, Y. Chen, Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6(11), 209 (2016)

    Article  Google Scholar 

  48. E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag, S.L. Suib, Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1), 264–271 (2010)

    Article  Google Scholar 

  49. Z. Xiao, M. Yuan, B. Yang, Z. Liu, J. Huang, D. Sun, Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules. Chemosphere 150, 357–364 (2016)

    Article  ADS  Google Scholar 

  50. B.S. Inbaraj, T.-Y. Tsai, B.-H. Chen, Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan. Sci. Technol. Adv. Mater. 13(1), 015002 (2012)

    Article  Google Scholar 

  51. Z. Durmus, H. Kavas, M.S. Toprak, A. Baykal, T.G. Altınçekiç, A. Aslan, A. Bozkurt, S. Coşgun, l-lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J. Alloy. Compd. 484(1), 371–376 (2009)

    Article  Google Scholar 

  52. T. Shahwan, S.A. Sirriah, M. Nairat, E. Boyacı, A.E. Eroğlu, T.B. Scott, K.R. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172(1), 258–266 (2011)

    Article  Google Scholar 

  53. Z. Wang, C. Fang, M. Megharaj, Characterization of iron–polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain. Chem. Eng. 2(4), 1022–1025 (2014)

    Article  Google Scholar 

  54. H. Muthukumar, M. Matheswaran, Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem. Eng. 3(12), 3149–3156 (2015)

    Article  Google Scholar 

  55. A. Ebrahiminezhad, S. Taghizadeh, Y. Ghasemi, A. Berenjian, Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci. Total Environ. 621, 1527–1532 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Mohammad Amani or Saeed Taghizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshtkhoo, N., Kouhbanani, M.A.J., Savardashtaki, A. et al. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys. A 124, 363 (2018). https://doi.org/10.1007/s00339-018-1782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1782-3

Navigation