Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemoelectronic circuits based on metal nanoparticles

Abstract

To develop electronic devices with novel functionalities and applications1,2, various non-silicon-based materials are currently being explored3,4,5. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts6. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells7, the processability of transistors8 and the sensitivity of photodetectors9, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics10 and energy conversion11. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry12,13,14,15. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic components built from films of metal nanoparticles.
Figure 2: Logic gates and ‘chemoelectronic’ circuits built from metal nanoparticles.
Figure 3: Electrical characteristics of metal nanoparticle diodes.
Figure 4: Metal nanoparticle sensors.

Similar content being viewed by others

References

  1. He, J., Nuzzo, R. G. & Rogers, J. A. Inorganic materials and assembly techniques for flexible and stretchable electronics. Proc. IEEE 103, 619–632 (2015).

    Article  CAS  Google Scholar 

  2. Liu, J. et al. Syringe-injectable electronics. Nature Nanotech. 10, 629–636 (2015).

    Article  CAS  Google Scholar 

  3. Fiori, G. et al. Electronics based on two-dimensional materials. Nature Nanotech. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  4. Wang, C., Dong, H., Hu, W., Liu, Y. & Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112, 2208–2267 (2011).

    Article  Google Scholar 

  5. Song, H., Reed, M. A. & Lee, T. Single molecule electronic devices. Adv. Mater. 23, 1583–1608 (2011).

    Article  CAS  Google Scholar 

  6. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  Google Scholar 

  7. Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    Article  CAS  Google Scholar 

  8. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech. 6, 348–352 (2011).

    Article  CAS  Google Scholar 

  9. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  Google Scholar 

  10. Sheldon, M. T., Van de Groep, J., Brown, A. M., Polman, A. & Atwater, H. A. Plasmoelectric potentials in metal nanostructures. Science 346, 828–831 (2014).

    Article  CAS  Google Scholar 

  11. Huang, X. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    Article  CAS  Google Scholar 

  12. Moreira, H. et al. Electron cotunneling transport in gold nanocrystal arrays. Phys. Rev. Lett. 107, 176803 (2011).

    Article  CAS  Google Scholar 

  13. Wessels, J. M. et al. Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. J. Am. Chem. Soc. 126, 3349–3356 (2004).

    Article  CAS  Google Scholar 

  14. Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article  CAS  Google Scholar 

  15. Zabet-Khosousi, A. & Dhirani, A. Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072–4124 (2008).

    Article  CAS  Google Scholar 

  16. Jana, N. R. & Peng, X. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 125, 14280–14281 (2003).

    Article  CAS  Google Scholar 

  17. Witt, D., Klajn, R., Barski, P. & Grzybowski, B. A. Applications, properties and synthesis of ω-functionalized n-alkanethiols and disulfides—the building blocks of self-assembled monolayers. Curr. Org. Chem. 8, 1763–1797 (2004).

    Article  CAS  Google Scholar 

  18. Akinoglu, E. M. et al. Evidence for critical scaling of plasmonic modes at the percolation threshold in metallic nanostructures. Appl. Phys. Lett. 103, 171106 (2013).

    Article  Google Scholar 

  19. Giersig, M. & Mulvaney, P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–3413 (1993).

    Article  CAS  Google Scholar 

  20. Kalsin, A. M., Kowalczyk, B., Smoukov, S. K., Klajn, R. & Grzybowski, B. A. Ionic-like behavior of oppositely charged nanoparticles. J. Am. Chem. Soc. 128, 15046–15047 (2006).

    Article  CAS  Google Scholar 

  21. Nakanishi, H. et al. Dynamic internal gradients control and direct electric currents within nanostructured materials. Nature Nanotech. 6, 740–746 (2011).

    Article  CAS  Google Scholar 

  22. Cho, E. S. et al. Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nature Mater. 11, 978–985 (2012).

    Article  CAS  Google Scholar 

  23. Fowler, R. H. & Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928).

    Article  CAS  Google Scholar 

  24. Isaacs, N. S. Physical Organic Chemistry (Longman Scientific & Technical, 1995).

    Google Scholar 

  25. Onsager, L. Initial recombination of ions. Phys. Rev. 54, 554–557 (1938).

    Article  CAS  Google Scholar 

  26. Buck, R. P. & Lindner, E. Recommendations for nomenclature of ion selective electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 66, 2527–2536 (1994).

    Article  CAS  Google Scholar 

  27. Walker, D. A., Kowalczyk, B., de la Cruz, M. O. & Grzybowski, B. A. Electrostatics at the nanoscale. Nanoscale 3, 1316–1344 (2011).

    Article  CAS  Google Scholar 

  28. Sillén, L. G., Martell, A. E. & Bjerrum, J. Stability Constants of Metal–Ion Complexes (Chemical Society London, 1964).

    Google Scholar 

  29. Martinez, A. W., Phillips, S. T., Whitesides, G. M. & Carrilho, E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10 (2009).

    Article  Google Scholar 

  30. Lide, D. R. CRC Handbook of Chemistry and Physics (CRC, 2004).

    Google Scholar 

Download references

Acknowledgements

The work was partly supported by the Non-Equilibrium Energy Research Center (NERC), which is an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0000989. Y.Y. acknowledges support from the Chinese Academy of Sciences and the National Natural Science Foundation of China (21571039). B.A.G. acknowledges support from the Institute for Basic Science Korea, Project Code IBS-R020-D1. The authors thank Q. Zhuang for assistance with 2 nm nanoparticle synthesis. The authors also thank K.S. Kim and R. Hołyst for help in modelling the counterion entropy of mixing.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. carried out the experiments and, with S.C.W., performed data analysis. P.F. modelled the experimental results. Y.Y., S.C.W. and B.A.G. wrote the manuscript. B.A.G. conceived and supervised the project.

Corresponding author

Correspondence to Bartosz A. Grzybowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Warren, S., Fuller, P. et al. Chemoelectronic circuits based on metal nanoparticles. Nature Nanotech 11, 603–608 (2016). https://doi.org/10.1038/nnano.2016.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing