Skip to main content
Log in

Vascular autophagy in health and disease

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Homeostasis is maintained within organisms through the physiological recycling process of autophagy, a catabolic process that is intricately involved in the mobilization of nutrients during starvation, recycling of cellular cargo, as well as initiation of cellular death pathways. Specific to the cardiovascular system, autophagy responds to both chemical (e.g. free radicals) and mechanical stressors (e.g. shear stress). It is imperative to note that autophagy is not a static process, and measurement of autophagic flux provides a more comprehensive investigation into the role of autophagy. The overarching themes emerging from decades of autophagy research are that basal levels of autophagic flux are critical, physiological stressors may increase or decrease autophagic flux, and more importantly, aberrant deviations from basal autophagy may elicit detrimental effects. Autophagy has predominantly been examined within cardiac or vascular smooth muscle tissue within the context of disease development and progression. Autophagic flux within the endothelium holds an important role in maintaining vascular function, demonstrated by the necessary role for intact autophagic flux for shear-induced release of nitric oxide however the underlying mechanisms have yet to be elucidated. Within this review, we theorize that autophagy itself does not solely control vascular homeostasis, rather, it works in concert with mitochondria, telomerase, and lipids to maintain physiological function. The primary emphasis of this review is on the role of autophagy within the human vasculature, and the integrative effects with physiological processes and diseases as they relate to the vascular structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMPK:

5′ Adenosine monophosphate-activated protein kinase

CAD:

Coronary artery disease

eNOS:

Endothelial nitric oxide synthase

FMD:

Flow-mediated dilation

SIRT:

Sirtuins

H2O2 :

Hydrogen peroxide

LC3:

Microtubule-associated protein 1A/1B-light chain 3

mTOR:

Mammalian target of rapamycin

NO:

Nitric oxide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TERT:

Telomerase reverse transcriptase

TFEB:

Transcription factor EB

VSM:

Vascular smooth muscle

References

  1. Ahmed S, Passos JF, Birket MJ, Beckmann T, Brings S, Peters H, Birch-Machin MA, von Zglinicki T, Saretzki G (2008) Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 121:1046–1053. https://doi.org/10.1242/jcs.019372

    Article  CAS  PubMed  Google Scholar 

  2. Ait-Aissa K, Heisner JS, Norwood Toro LE, Bruemmer D, Doyon G, Harmann L, Geurts A, Camara AKS, Beyer AM (2019) Telomerase deficiency predisposes to heart failure and ischemia-reperfusion injury. Front Cardiovasc Med 6:31. https://doi.org/10.3389/fcvm.2019.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ali M, Devkota S, Roh JI, Lee J, Lee HW (2016) Telomerase reverse transcriptase induces basal and amino acid starvation-induced autophagy through mTORC1. Biochem Biophys Res Commun 478:1198–1204. https://doi.org/10.1016/j.bbrc.2016.08.094

    Article  CAS  PubMed  Google Scholar 

  4. Arroyo LH, Lee RT (1999) Mechanisms of plaque rupture: mechanical and biologic interactions. Cardiovasc Res 41:369–375. https://doi.org/10.1016/s0008-6363(98)00308-3

    Article  CAS  PubMed  Google Scholar 

  5. Bejarano E, Cuervo AM (2010) Chaperone-mediated autophagy. Proceedings of the American Thoracic Society 7:29–39. https://doi.org/10.1513/pats.200909-102JS

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702. https://doi.org/10.1161/circresaha.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beyer AM, Durand MJ, Hockenberry J, Gamblin TC, Phillips SA, Gutterman DD (2014) An acute rise in intraluminal pressure shifts the mediator of flow-mediated dilation from nitric oxide to hydrogen peroxide in human arterioles. American journal of physiology. Heart Circ Physiol 307:H1587–1593. https://doi.org/10.1152/ajpheart.00557.2014

    Article  CAS  Google Scholar 

  8. Beyer AM, Freed JK, Durand MJ, Riedel M, Ait-Aissa K, Green P, Hockenberry JC, Morgan RG, Donato AJ, Peleg R, Gasparri M, Rokkas CK, Santos JH, Priel E, Gutterman DD (2016) Critical role for telomerase in the mechanism of flow-mediated dilation in the human microcirculation. Circ Res 118:856–866. https://doi.org/10.1161/circresaha.115.307918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bharath LP, Mueller R, Li Y, Ruan T, Kunz D, Goodrich R, Mills T, Deeter L, Sargsyan A, Anandh Babu PV, Graham TE, Symons JD (2014) Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability. Can J Physiol Pharmacol 92:605–612. https://doi.org/10.1139/cjpp-2014-0017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bharath LP, Cho JM, Park SK, Ruan T, Li Y, Mueller R, Bean T, Reese V, Richardson RS, Cai J, Sargsyan A, Pires K, Anandh Babu PV, Boudina S, Graham TE, Symons JD (2017) Endothelial cell autophagy maintains shear stress-induced nitric oxide generation via glycolysis-dependent purinergic signaling to endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 37:1646–1656. https://doi.org/10.1161/atvbaha.117.309510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonaa KH, Mannsverk J, Wiseth R, Aaberge L, Myreng Y, Nygard O, Nilsen DW, Klow NE, Uchto M, Trovik T, Bendz B, Stavnes S, Bjornerheim R, Larsen AI, Slette M, Steigen T, Jakobsen OJ, Bleie O, Fossum E, Hanssen TA, Dahl-Eriksen O, Njolstad I, Rasmussen K, Wilsgaard T, Nordrehaug JE (2016) Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med 375:1242–1252. https://doi.org/10.1056/NEJMoa1607991

    Article  CAS  PubMed  Google Scholar 

  12. Bravo-San Pedro JM, Kroemer G, Galluzzi L (2017) Autophagy and mitophagy in cardiovascular disease. Circ Res 120:1812–1824. https://doi.org/10.1161/circresaha.117.311082

    Article  CAS  PubMed  Google Scholar 

  13. Buchanan CE, Kadlec AO, Hoch AZ, Gutterman DD, Durand MJ (2017) Hypertension during weight lifting reduces flow-mediated dilation in nonathletes. Med Sci Sports Exerc 49:669–675. https://doi.org/10.1249/mss.0000000000001150

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chabowski DS, Kadlec AO, Ait-Aissa K, Hockenberry JC, Pearson PJ, Beyer AM, Gutterman DD (2018) Lysophosphatidic acid acts on LPA1 receptor to increase H2 O2 during flow-induced dilation in human adipose arterioles. Br J Pharmacol 175:4266–4280. https://doi.org/10.1111/bph.14492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chatterjee S, Fisher AB (2014) Mechanotransduction in the endothelium: role of membrane proteins and reactive oxygen species in sensing, transduction, and transmission of the signal with altered blood flow. Antioxid Redox Signal 20:899–913. https://doi.org/10.1089/ars.2013.5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040–1052. https://doi.org/10.1038/cdd.2009.49

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Peng IC, Cui X, Li YS, Chien S, Shyy JY (2010) Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci USA 107:10268–10273. https://doi.org/10.1073/pnas.1003833107

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen C, Gao JL, Liu MY, Li SL, Xuan XC, Zhang XZ, Zhang XY, Wei YY, Zhen CL, Jin J, Shen X, Dong DL (2017) Mitochondrial fission inhibitors suppress endothelin-1-induced artery constriction. Cel Physiol Biochem Int J Exp Cel Physiol Biochem Pharmacol 42:1802–1811. https://doi.org/10.1159/000479536

    Article  CAS  Google Scholar 

  19. Cheng C, Tempel D, Oostlander A, Helderman F, Gijsen F, Wentzel J, van Haperen R, Haitsma DB, Serruys PW, van der Steen AF, de Crom R, Krams R (2008) Rapamycin modulates the eNOS vs. shear stress relationship. Cardiovasc Res 78:123–129. https://doi.org/10.1093/cvr/cvm103

    Article  CAS  PubMed  Google Scholar 

  20. Cheng H, Fan X, Lawson WE, Paueksakon P, Harris RC (2015) Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy. Kidney Int 88:85–94. https://doi.org/10.1038/ki.2015.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. American journal of physiology. Heart Circ Physiol 292:H1209–1224. https://doi.org/10.1152/ajpheart.01047.2006

    Article  CAS  Google Scholar 

  22. Craige SM, Kroller-Schon S, Li C, Kant S, Cai S, Chen K, Contractor MM, Pei Y, Schulz E, Keaney JF Jr (2016) PGC-1alpha dictates endothelial function through regulation of eNOS expression. Sci Rep 6:38210. https://doi.org/10.1038/srep38210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dai XY, Zhao MM, Cai Y, Guan QC, Zhao Y, Guan Y, Kong W, Zhu WG, Xu MJ, Wang X (2013) Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int 83:1042–1051. https://doi.org/10.1038/ki.2012.482

    Article  CAS  PubMed  Google Scholar 

  24. De Meyer GR, De Keulenaer GW, Martinet W (2010) Role of autophagy in heart failure associated with aging. Heart Fail Rev 15:423–430. https://doi.org/10.1007/s10741-010-9166-6

    Article  PubMed  Google Scholar 

  25. DeBosch BJ, Heitmeier MR, Mayer AL, Higgins CB, Crowley JR, Kraft TE, Chi M, Newberry EP, Chen Z, Finck BN, Davidson NO, Yarasheski KE, Hruz PW, Moley KH (2016) Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signaling 9:ra21. https://doi.org/10.1126/scisignal.aac5472

    Article  Google Scholar 

  26. Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, Fessel JP, Gamboa JL, Harrison DG, Dikalov SI (2017) Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circ Res 121:564–574. https://doi.org/10.1161/circresaha.117.310933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dodson M, Darley-Usmar V, Zhang J (2013) Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radical Biol Med 63:207–221. https://doi.org/10.1016/j.freeradbiomed.2013.05.014

    Article  CAS  Google Scholar 

  28. Dong Q, Xing W, Fu F, Liu Z, Wang J, Liang X, Zhou X, Yang Q, Zhang W, Gao F, Wang S, Zhang H (2016) Tetrahydroxystilbene glucoside inhibits excessive autophagy and improves microvascular endothelial dysfunction in prehypertensive spontaneously hypertensive rats. Am J Chin Med 44:1393–1412. https://doi.org/10.1142/s0192415x16500786

    Article  CAS  PubMed  Google Scholar 

  29. Dong Q, Xing W, Su F, Liang X, Tian F, Gao F, Wang S, Zhang H (2017) Tetrahydroxystilbene glycoside improves microvascular endothelial dysfunction and ameliorates obesity-associated hypertension in obese ZDF rats via inhibition of endothelial autophagy. Cel Physiol Biochem 43:293–307. https://doi.org/10.1159/000480410

    Article  CAS  Google Scholar 

  30. Dunlop EA, Tee AR (2014) mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol 36:121–129. https://doi.org/10.1016/j.semcdb.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  31. Durand MJ, Dharmashankar K, Bian JT, Das E, Vidovich M, Gutterman DD, Phillips SA (2015) Acute exertion elicits a H2O2-dependent vasodilator mechanism in the microvasculature of exercise-trained but not sedentary adults. Hypertension 65:140–145. https://doi.org/10.1161/hypertensionaha.114.04540

    Article  CAS  PubMed  Google Scholar 

  32. Evans TD, Jeong SJ, Zhang X, Sergin I, Razani B (2018) TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy 14:724–726. https://doi.org/10.1080/15548627.2018.1434373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fernandez-Marcos PJ, Nobrega-Pereira S (2016) NADPH: new oxygen for the ROS theory of aging. Oncotarget 7:50814–50815. https://doi.org/10.18632/oncotarget.10744

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fetterman JL, Holbrook M, Flint N, Feng B, Breton-Romero R, Linder EA, Berk BD, Duess MA, Farb MG, Gokce N, Shirihai OS, Hamburg NM, Vita JA (2016) Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling. Atherosclerosis 247:207–217. https://doi.org/10.1016/j.atherosclerosis.2016.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Finn AV, Kolodgie FD, Harnek J, Guerrero LJ, Acampado E, Tefera K, Skorija K, Weber DK, Gold HK, Virmani R (2005) Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation 112:270–278. https://doi.org/10.1161/circulationaha.104.508937

    Article  CAS  PubMed  Google Scholar 

  36. Freed JK, Beyer AM, LoGiudice JA, Hockenberry JC, Gutterman DD (2014) Ceramide changes the mediator of flow-induced vasodilation from nitric oxide to hydrogen peroxide in the human microcirculation. Circ Res 115:525–532. https://doi.org/10.1161/circresaha.115.303881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discovery 16:487–511. https://doi.org/10.1038/nrd.2017.22

    Article  CAS  PubMed  Google Scholar 

  38. Gatica D, Chiong M, Lavandero S, Klionsky DJ (2015) Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 116:456–467. https://doi.org/10.1161/circresaha.114.303788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Battino M (2018) Autophagy in human health and disease: novel therapeutic opportunities. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7234

    Article  PubMed  Google Scholar 

  40. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12. https://doi.org/10.1002/path.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gori T (2018) Endothelial function: a short guide for the interventional cardiologist. Int J Mol Sci. https://doi.org/10.3390/ijms19123838

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goryo Y, Kume T, Ueda T, Watanabe M, Yamada R, Neishi Y, Saito Y, Uemura S (2018) Vascular healing response after everolimus-eluting stent implantation in acute coronary syndrome culprit lesions: comparison with implantation in stable angina pectoris. Acta Cardiol Sin 34:124–129. https://doi.org/10.6515/acs.201803_34(2).20171115a

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gottlieb RA, Andres AM, Sin J, Taylor DP (2015) Untangling autophagy measurements: all fluxed up. Circ Res 116:504–514. https://doi.org/10.1161/circresaha.116.303787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grootaert MOJ, Roth L, Schrijvers DM, De Meyer GRY, Martinet W (2018a) Defective autophagy in atherosclerosis: to die or to senesce? Oxidative Med Cel longevity 2018:7687083. https://doi.org/10.1155/2018/7687083

    Article  CAS  Google Scholar 

  45. Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, De Meyer GRY (2018b) Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 114:622–634. https://doi.org/10.1093/cvr/cvy007

    Article  CAS  PubMed  Google Scholar 

  46. Guo F, Li X, Peng J, Tang Y, Yang Q, Liu L, Wang Z, Jiang Z, Xiao M, Ni C, Chen R, Wei D, Wang GX (2014) Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system. Ann Biomed Eng 42:1978–1988. https://doi.org/10.1007/s10439-014-1033-5

    Article  PubMed  Google Scholar 

  47. Hafizi S, Wang X, Chester AH, Yacoub MH, Proud CG (2004) ANG II activates effectors of mTOR via PI3-K signaling in human coronary smooth muscle cells. American journal of physiology. Heart Circ Physiol 287:H1232–1238. https://doi.org/10.1152/ajpheart.00040.2004

    Article  CAS  Google Scholar 

  48. Haga M, Yamashita A, Paszkowiak J, Sumpio BE, Dardik A (2003) Oscillatory shear stress increases smooth muscle cell proliferation and Akt phosphorylation. J Vasc Surg 37:1277–1284. https://doi.org/10.1016/s0741-5214(03)00329-x

    Article  PubMed  Google Scholar 

  49. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. He L, Zhou Q, Huang Z, Xu J, Zhou H, Lv D, Lu L, Huang S, Tang M, Zhong J, Chen JX, Luo X, Li L, Chen L (2019) PINK1/Parkin-mediated mitophagy promotes apelin-13-induced vascular smooth muscle cell proliferation by AMPKalpha and exacerbates atherosclerotic lesions. J Cell Physiol 234:8668–8682. https://doi.org/10.1002/jcp.27527

    Article  CAS  PubMed  Google Scholar 

  51. Headland ML, Clifton PM, Keogh JB (2018) Effect of intermittent energy restriction on flow mediated dilatation, a measure of endothelial function: a short report. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15061166

    Article  PubMed  PubMed Central  Google Scholar 

  52. Horn P, Baars T, Kahlert P, Heiss C, Westenfeld R, Kelm M, Erbel R, Heusch G, Kleinbongard P (2015) Release of intracoronary microparticles during stent implantation into stable atherosclerotic lesions under protection with an aspiration device. PLoS ONE 10:e0124904. https://doi.org/10.1371/journal.pone.0124904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, Ikeda K, Ogata T, Matoba S (2013) Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun 4:2308. https://doi.org/10.1038/ncomms3308

    Article  CAS  PubMed  Google Scholar 

  54. Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL (2014) Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 21:3. https://doi.org/10.1186/1423-0127-21-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang F (2016) Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol 43:1021–1028. https://doi.org/10.1111/1440-1681.12649

    Article  CAS  PubMed  Google Scholar 

  57. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, Luscher TF (1995) Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 91:1314–1319

    Article  CAS  PubMed  Google Scholar 

  58. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48:193–202. https://doi.org/10.1016/j.jacc.2006.03.042

    Article  PubMed  Google Scholar 

  59. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19:419–421. https://doi.org/10.1096/fj.04-2622fje

    Article  CAS  PubMed  Google Scholar 

  60. Kadlec AO, Chabowski DS, Ait-Aissa K, Hockenberry JC, Otterson MF, Durand MJ, Freed JK, Beyer AM, Gutterman DD (2017) PGC-1alpha (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) overexpression in coronary artery disease recruits NO and hydrogen peroxide during flow-mediated dilation and protects against increased intraluminal pressure. Hypertension 70:166–173. https://doi.org/10.1161/hypertensionaha.117.09289

    Article  CAS  PubMed  Google Scholar 

  61. Kadlec AO, Barnes C, Durand MJ, Gutterman DD (2018) Microvascular adaptations to exercise: protective effect of PGC-1 alpha. Am J Hypertens 31:240–246. https://doi.org/10.1093/ajh/hpx162

    Article  CAS  PubMed  Google Scholar 

  62. Kaizuka T, Morishita H, Hama Y, Tsukamoto S, Matsui T, Toyota Y, Kodama A, Ishihara T, Mizushima T, Mizushima N (2016) An autophagic flux probe that releases an internal control. Mol Cell 64:835–849. https://doi.org/10.1016/j.molcel.2016.09.037

    Article  CAS  PubMed  Google Scholar 

  63. Kaplon RE, Hill SD, Bispham NZ, Santos-Parker JR, Nowlan MJ, Snyder LL, Chonchol M, LaRocca TJ, McQueen MB, Seals DR (2016) Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults. Aging 8:1167–1183. https://doi.org/10.18632/aging.100962

    Article  PubMed  PubMed Central  Google Scholar 

  64. Karamanlidis G, Bautista-Hernandez V, Fynn-Thompson F, Del Nido P, Tian R (2011) Impaired mitochondrial biogenesis precedes heart failure in right ventricular hypertrophy in congenital heart disease. Circ Heart Fail 4:707–713. https://doi.org/10.1161/circheartfailure.111.961474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kheloufi M, Vion AC, Hammoutene A, Poisson J, Lasselin J, Devue C, Pic I, Dupont N, Busse J, Stark K, Lafaurie-Janvore J, Barakat AI, Loyer X, Souyri M, Viollet B, Julia P, Tedgui A, Codogno P, Boulanger CM, Rautou PE (2018) Endothelial autophagic flux hampers atherosclerotic lesion development. Autophagy 14:173–175. https://doi.org/10.1080/15548627.2017.1395114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kida Y, Goligorsky MS (2016) Sirtuins, cell senescence, and vascular aging. Can J Cardiol 32:634–641. https://doi.org/10.1016/j.cjca.2015.11.022

    Article  PubMed  Google Scholar 

  67. Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162. https://doi.org/10.1089/ars.2006.8.152

    Article  CAS  PubMed  Google Scholar 

  68. King JS, Veltman DM, Insall RH (2011) The induction of autophagy by mechanical stress. Autophagy 7:1490–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kitada M, Ogura Y, Koya D (2016) The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging 8:2290–2307. https://doi.org/10.18632/aging.101068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kleinbongard P, Bose D, Baars T, Mohlenkamp S, Konorza T, Schoner S, Elter-Schulz M, Eggebrecht H, Degen H, Haude M, Levkau B, Schulz R, Erbel R, Heusch G (2011) Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ Res 108:344–352. https://doi.org/10.1161/circresaha.110.235713

    Article  CAS  PubMed  Google Scholar 

  71. Kleinbongard P, Konorza T, Bose D, Baars T, Haude M, Erbel R, Heusch G (2012) Lessons from human coronary aspirate. J Mol Cell Cardiol 52:890–896. https://doi.org/10.1016/j.yjmcc.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  72. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, Agarwal R, Aghi MK, Agnello M, Agostinis P, Aguilar PV, Aguirre-Ghiso J, Airoldi EM, Ait-Si-Ali S, Akematsu T, Akporiaye ET, Al-Rubeai M, Albaiceta GM, Albanese C, Albani D, Albert ML, Aldudo J, Algul H, Alirezaei M, Alloza I, Almasan A, Almonte-Beceril M, Alnemri ES, Alonso C, Altan-Bonnet N, Altieri DC, Alvarez S, Alvarez-Erviti L, Alves S, Amadoro G, Amano A, Amantini C, Ambrosio S, Amelio I, Amer AO, Amessou M, Amon A, An Z, Anania FA, Andersen SU, Andley UP, Andreadi CK, Andrieu-Abadie N, Anel A, Ann DK, Anoopkumar-Dukie S, Antonioli M, Aoki H, Apostolova N, Aquila S, Aquilano K, Araki K, Arama E, Aranda A, Araya J, Arcaro A, Arias E, Arimoto H, Ariosa AR, Armstrong JL, Arnould T, Arsov I, Asanuma K, Askanas V, Asselin E, Atarashi R, Atherton SS, Atkin JD, Attardi LD, Auberger P, Auburger G, Aurelian L, Autelli R, Avagliano L, Avantaggiati ML, Avrahami L, Awale S, Azad N, Bachetti T, Backer JM, Bae DH, Bae JS, Bae ON, Bae SH, Baehrecke EH, Baek SH, Baghdiguian S, Bagniewska-Zadworna A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kubli DA, Quinsay MN, Gustafsson AB (2013) Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Commu Integr Biol 6:e24511. https://doi.org/10.4161/cib.24511

    Article  CAS  Google Scholar 

  74. Kuhlow D, Florian S, von Figura G, Weimer S, Schulz N, Petzke KJ, Zarse K, Pfeiffer AF, Rudolph KL, Ristow M (2010) Telomerase deficiency impairs glucose metabolism and insulin secretion. Aging 2:650–658. https://doi.org/10.18632/aging.100200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kumar V, Wollner C, Kurth T, Bukowy JD, Cowley AW Jr (2017) Inhibition of mammalian target of rapamycin complex 1 attenuates salt-induced hypertension and kidney injury in dahl salt-sensitive rats. Hypertension 70:813–821. https://doi.org/10.1161/hypertensionaha.117.09456

    Article  CAS  PubMed  Google Scholar 

  76. Kurdi A, De Meyer GR, Martinet W (2016) Potential therapeutic effects of mTOR inhibition in atherosclerosis. Br J Clin Pharmacol 82:1267–1279. https://doi.org/10.1111/bcp.12820

    Article  CAS  PubMed  Google Scholar 

  77. Kurdi A, Martinet W, De Meyer GRY (2018) mTOR inhibition and cardiovascular diseases: dyslipidemia and atherosclerosis. Transplantation 102:S44–s46. https://doi.org/10.1097/tp.0000000000001693

    Article  CAS  PubMed  Google Scholar 

  78. Lampert MA, Gustafsson AB (2018) Balancing autophagy for a healthy heart. Cur Opin Physiol 1:21–26. https://doi.org/10.1016/j.cophys.2017.11.001

    Article  Google Scholar 

  79. LaRocca TJ, Henson GD, Thorburn A, Sindler AL, Pierce GL, Seals DR (2012) Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol 590:3305–3316. https://doi.org/10.1113/jphysiol.2012.229690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. LaRocca TJ, Gioscia-Ryan RA, Hearon CM Jr, Seals DR (2013) The autophagy enhancer spermidine reverses arterial aging. Mech Ageing Dev 134:314–320. https://doi.org/10.1016/j.mad.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lavandero S, Chiong M, Rothermel BA, Hill JA (2015) Autophagy in cardiovascular biology. J Clin Investig 125:55–64. https://doi.org/10.1172/jci73943

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lee SJ, Smith A, Guo L, Alastalo TP, Li M, Sawada H, Liu X, Chen ZH, Ifedigbo E, Jin Y, Feghali-Bostwick C, Ryter SW, Kim HP, Rabinovitch M, Choi AM (2011) Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 183:649–658. https://doi.org/10.1164/rccm.201005-0746OC

    Article  CAS  PubMed  Google Scholar 

  83. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540. https://doi.org/10.1042/bj20111451

    Article  CAS  PubMed  Google Scholar 

  84. Li H, Li J, Li Y, Singh P, Cao L, Xu LJ, Li D, Wang Y, Xie Z, Gui Y, Zheng XL (2012) Sonic hedgehog promotes autophagy of vascular smooth muscle cells. American journal of physiology. Heart Circ Physiol 303:H1319–1331. https://doi.org/10.1152/ajpheart.00160.2012

    Article  CAS  Google Scholar 

  85. Li R, Jen N, Wu L, Lee J, Fang K, Quigley K, Lee K, Wang S, Zhou B, Vergnes L, Chen YR, Li Z, Reue K, Ann DK, Hsiai TK (2015) Disturbed flow induces autophagy, but impairs autophagic flux to perturb mitochondrial homeostasis. Antioxid Redox Signal 23:1207–1219. https://doi.org/10.1089/ars.2014.5896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li J, Chen T, Xiao M, Li N, Wang S, Su H, Guo X, Liu H, Yan F, Yang Y, Zhang Y, Bu P (2016) Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget 7:86648–86659. https://doi.org/10.18632/oncotarget.13429

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I (2012) Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 15:545–553. https://doi.org/10.1016/j.cmet.2012.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD (2003) Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res 93:573–580. https://doi.org/10.1161/01.Res.0000091261.19387.Ae

    Article  CAS  PubMed  Google Scholar 

  89. Liu D, Cui W, Liu B, Hu H, Liu J, Xie R, Yang X, Gu G, Zhang J, Zheng H (2014) Atorvastatin protects vascular smooth muscle cells from TGF-beta1-stimulated calcification by inducing autophagy via suppression of the beta-catenin pathway. Cel Physiol Biochem 33:129–141. https://doi.org/10.1159/000356656

    Article  CAS  Google Scholar 

  90. Liu J, Bi X, Chen T, Zhang Q, Wang SX, Chiu JJ, Liu GS, Zhang Y, Bu P, Jiang F (2015) Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis 6:e1827. https://doi.org/10.1038/cddis.2015.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Long L, Yang X, Southwood M, Lu J, Marciniak SJ, Dunmore BJ, Morrell NW (2013) Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ Res 112:1159–1170. https://doi.org/10.1161/circresaha.111.300483

    Article  CAS  PubMed  Google Scholar 

  92. Lugus JJ, Ngoh GA, Bachschmid MM, Walsh K (2011) Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells. J Mol Cell Cardiol 51:885–893. https://doi.org/10.1016/j.yjmcc.2011.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma S, Wang Y, Chen Y, Cao F (2015) The role of the autophagy in myocardial ischemia/reperfusion injury. Biochem Biophys Acta 1852:271–276. https://doi.org/10.1016/j.bbadis.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  94. Makino N, Oyama J, Maeda T, Koyanagi M, Higuchi Y, Tsuchida K (2015) Calorie restriction increases telomerase activity, enhances autophagy, and improves diastolic dysfunction in diabetic rat hearts. Mol Cell Biochem 403:1–11. https://doi.org/10.1007/s11010-015-2327-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Martinet W, De Loof H, De Meyer GR (2014) mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis 233:601–607. https://doi.org/10.1016/j.atherosclerosis.2014.01.040

    Article  CAS  PubMed  Google Scholar 

  96. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104:14855–14860. https://doi.org/10.1073/pnas.0704329104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A, Goddard M, Bennett M (2006) Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 99:156–164. https://doi.org/10.1161/01.RES.0000233315.38086.bc

    Article  CAS  PubMed  Google Scholar 

  98. McCarthy CG, Wenceslau CF, Calmasini FB, Klee NS, Brands MW, Joe B, Webb RC (2019) Reconstitution of autophagy ameliorates vascular function and arterial stiffening in spontaneously hypertensive rats. American journal of physiology. Heart Circ Physiol 317:H1013–h1027. https://doi.org/10.1152/ajpheart.00227.2019

    Article  CAS  Google Scholar 

  99. Mei Y, Thompson MD, Cohen RA, Tong X (2015) Autophagy and oxidative stress in cardiovascular diseases. Biochem Biophys Acta 1852:243–251. https://doi.org/10.1016/j.bbadis.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  100. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Vita JA, Levy D, Benjamin EJ (2010) Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121:505–511. https://doi.org/10.1161/circulationaha.109.886655

    Article  PubMed  PubMed Central  Google Scholar 

  101. Miwa S, Czapiewski R, Wan T, Bell A, Hill KN, von Zglinicki T, Saretzki G (2016) Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria. Aging 8:2551–2567. https://doi.org/10.18632/aging.101089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mizoguchi T, Sawada T, Shinke T, Yamada S, Okamoto H, Kim SS, Takarada A, Yasaka Y (2014) Detailed comparison of intra-stent conditions 12 months after implantation of everolimus-eluting stents in patients with ST-segment elevation myocardial infarction or stable angina pectoris. Int J Cardiol 171:224–230. https://doi.org/10.1016/j.ijcard.2013.12.021

    Article  PubMed  Google Scholar 

  103. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005

    Article  CAS  PubMed  Google Scholar 

  104. Morgan RG, Ives SJ, Lesniewski LA, Cawthon RM, Andtbacka RH, Noyes RD, Richardson RS, Donato AJ (2013) Age-related telomere uncapping is associated with cellular senescence and inflammation independent of telomere shortening in human arteries. American journal of physiology. Heart Circ Physiol 305:H251–258. https://doi.org/10.1152/ajpheart.00197.2013

    Article  CAS  Google Scholar 

  105. Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Benit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, Lopez-Otin C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192:615–629. https://doi.org/10.1083/jcb.201008167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803. https://doi.org/10.1083/jcb.200809125

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nemchenko A, Chiong M, Turer A, Lavandero S, Hill JA (2011) Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 51:584–593. https://doi.org/10.1016/j.yjmcc.2011.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nguyen AT, Gomez D, Bell RD, Campbell JH, Clowes AW, Gabbiani G, Giachelli CM, Parmacek MS, Raines EW, Rusch NJ, Speer MY, Sturek M, Thyberg J, Towler DA, Weiser-Evans MC, Yan C, Miano JM, Owens GK (2013) Smooth muscle cell plasticity: fact or fiction? Circ Res 112:17–22. https://doi.org/10.1161/circresaha.112.281048

    Article  CAS  PubMed  Google Scholar 

  109. Nussenzweig SC, Verma S, Finkel T (2015) The role of autophagy in vascular biology. Circ Res 116:480–488. https://doi.org/10.1161/circresaha.116.303805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Osonoi Y, Mita T, Azuma K, Nakajima K, Masuyama A, Goto H, Nishida Y, Miyatsuka T, Fujitani Y, Koike M, Mitsumata M, Watada H (2018) Defective autophagy in vascular smooth muscle cells enhances cell death and atherosclerosis. Autophagy 14:1991–2006. https://doi.org/10.1080/15548627.2018.1501132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. O'Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171–181. https://doi.org/10.1038/nrm2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. https://doi.org/10.1152/physrev.00029.2006

    Article  CAS  PubMed  Google Scholar 

  113. Palumbo R, Gaetano C, Antonini A, Pompilio G, Bracco E, Ronnstrand L, Heldin CH, Capogrossi MC (2002) Different effects of high and low shear stress on platelet-derived growth factor isoform release by endothelial cells: consequences for smooth muscle cell migration. Arterioscler Thromb Vasc Biol 22:405–411. https://doi.org/10.1161/hq0302.104528

    Article  CAS  PubMed  Google Scholar 

  114. Park SK, La Salle DT, Cerbie J, Cho JM, Bledsoe AD, Nelson AD, Morgan DE, Richardson RS, Shiu YT, Boudina S, Trinity JD, Symons JD (2018) Elevated arterial shear rate increases indices of endothelial cell autophagy and nitric oxide synthase activation in humans Heart and circulatory physiology. Am J Physiol. https://doi.org/10.1152/ajpheart.00561.2018

    Article  Google Scholar 

  115. Pestana CR, Oishi JC, Salistre-Araujo HS, Rodrigues GJ (2015) Inhibition of autophagy by chloroquine stimulates nitric oxide production and protects endothelial function during serum deprivation. Cel Physiol Biochem 37:1168–1177. https://doi.org/10.1159/000430240

    Article  CAS  Google Scholar 

  116. Phillips SA, Hatoum OA, Gutterman DD (2007) The mechanism of flow-induced dilation in human adipose arterioles involves hydrogen peroxide during CAD. American journal of physiology. Heart Circ Physiol 292:H93–100. https://doi.org/10.1152/ajpheart.00819.2006

    Article  CAS  Google Scholar 

  117. Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, Ting JP, Virgin HW, Kastan MB, Semenkovich CF (2012) Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15:534–544. https://doi.org/10.1016/j.cmet.2012.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rogers MA, Maldonado N, Hutcheson JD, Goettsch C, Goto S, Yamada I, Faits T, Sesaki H, Aikawa M, Aikawa E (2017) Dynamin-related protein 1 inhibition attenuates cardiovascular calcification in the presence of oxidative stress. Circ Res 121:220–233. https://doi.org/10.1161/circresaha.116.310293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Roh JI, Kim Y, Oh J, Kim Y, Lee J, Lee J, Chun KH, Lee HW (2018) Hexokinase 2 is a molecular bridge linking telomerase and autophagy. PLoS ONE 13:e0193182. https://doi.org/10.1371/journal.pone.0193182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Santos-Parker JR, Pierce GL, Seals DR, Donato AJ (2017) Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. American journal of physiology. Heart Circ Physiol 313:H890–h895. https://doi.org/10.1152/ajpheart.00416.2017

    Article  CAS  Google Scholar 

  121. Ryan J, Dasgupta A, Huston J, Chen KH, Archer SL (2015) Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med (Berlin, Germany) 93:229–242. https://doi.org/10.1007/s00109-015-1263-5

    Article  CAS  Google Scholar 

  122. Ryter SW, Lee SJ, Smith A, Choi AM (2010) Autophagy in vascular disease. Proc Am Thorac Soc 7:40–47. https://doi.org/10.1513/pats.200909-100JS

    Article  PubMed  PubMed Central  Google Scholar 

  123. Saha S, Panigrahi DP, Patil S, Bhutia SK (2018) Autophagy in health and disease: a comprehensive review. Biomed Pharmacother Biomed Pharmacother 104:485–495. https://doi.org/10.1016/j.biopha.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  124. Salabei JK, Conklin DJ (2013) Cardiovascular autophagy: crossroads of pathology, pharmacology and toxicology. Cardiovasc Toxicol 13:220–229. https://doi.org/10.1007/s12012-013-9200-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Salabei JK, Hill BG (2013a) Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation. Redox Biol 1:542–551. https://doi.org/10.1016/j.redox.2013.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Salabei JK, Hill BG (2013b) Implications of autophagy for vascular smooth muscle cell function and plasticity. Free Radical Biol Med 65:693–703. https://doi.org/10.1016/j.freeradbiomed.2013.08.003

    Article  CAS  Google Scholar 

  127. Salabei JK, Hill BG (2015) Autophagic regulation of smooth muscle cell biology. Redox Biol 4:97–103. https://doi.org/10.1016/j.redox.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  128. Santos JH, Meyer JN, Skorvaga M, Annab LA, Van Houten B (2004) Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3:399–411. https://doi.org/10.1111/j.1474-9728.2004.00124.x

    Article  CAS  PubMed  Google Scholar 

  129. Santos JH, Meyer JN, Van Houten B (2006) Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum Mol Genet 15:1757–1768. https://doi.org/10.1093/hmg/ddl098

    Article  CAS  PubMed  Google Scholar 

  130. Sato I, Morita I, Kaji K, Ikeda M, Nagao M, Murota S (1993) Reduction of nitric oxide producing activity associated with in vitro aging in cultured human umbilical vein endothelial cell. Biochem Biophys Res Commun 195:1070–1076. https://doi.org/10.1006/bbrc.1993.2153

    Article  CAS  PubMed  Google Scholar 

  131. Schiattarella GG, Hill JA (2016) Therapeutic targeting of autophagy in cardiovascular disease. J Mol Cell Cardiol 95:86–93. https://doi.org/10.1016/j.yjmcc.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  132. Schrijvers DM, De Meyer GR, Martinet W (2011) Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol 31:2787–2791. https://doi.org/10.1161/atvbaha.111.224899

    Article  CAS  PubMed  Google Scholar 

  133. Sciarretta S, Maejima Y, Zablocki D, Sadoshima J (2018) The role of autophagy in the heart. Annu Rev Physiol 80:1–26. https://doi.org/10.1146/annurev-physiol-021317-121427

    Article  CAS  PubMed  Google Scholar 

  134. Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (London, England: 1979) 120:357–375. https://doi.org/10.1042/cs20100476

    Article  CAS  Google Scholar 

  135. Sergin I, Evans TD, Zhang X, Bhattacharya S, Stokes CJ, Song E, Ali S, Dehestani B, Holloway KB, Micevych PS, Javaheri A, Crowley JR, Ballabio A, Schilling JD, Epelman S, Weihl CC, Diwan A, Fan D, Zayed MA, Razani B (2017) Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat Commun 8:15750. https://doi.org/10.1038/ncomms15750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shenouda SM, Widlansky ME, Chen K, Xu G, Holbrook M, Tabit CE, Hamburg NM, Frame AA, Caiano TL, Kluge MA, Duess MA, Levit A, Kim B, Hartman ML, Joseph L, Shirihai OS, Vita JA (2011) Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124:444–453. https://doi.org/10.1161/circulationaha.110.014506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shi N, Chen SY (2014) Mechanisms simultaneously regulate smooth muscle proliferation and differentiation. J Biomed Res 28:40–46. https://doi.org/10.7555/jbr.28.20130130

    Article  CAS  PubMed  Google Scholar 

  138. Simsek C, Magro M, Boersma E, Onuma Y, Nauta ST, Gaspersz MP, van der Giessen WJ, van Domburg RT, Serruys PW (2010) The unrestricted use of sirolimus- and paclitaxel-eluting stents results in better clinical outcomes during 6-year follow-up than bare-metal stents: an analysis of the RESEARCH (Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital) and T-SEARCH (Taxus-Stent Evaluated At Rotterdam Cardiology Hospital) registries. JACC Cardiovasc Interv 3:1051–1058. https://doi.org/10.1016/j.jcin.2010.08.003

    Article  PubMed  Google Scholar 

  139. Singhapol C, Pal D, Czapiewski R, Porika M, Nelson G, Saretzki GC (2013) Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PLoS ONE 8:e52989. https://doi.org/10.1371/journal.pone.0052989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stuck BJ, Lenski M, Bohm M, Laufs U (2008) Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase. J Biol Chem 283:32562–32569. https://doi.org/10.1074/jbc.M801904200

    Article  CAS  PubMed  Google Scholar 

  141. Swiader A, Nahapetyan H, Faccini J, D'Angelo R, Mucher E, Elbaz M, Boya P, Vindis C (2016) Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget 7:28821–28835. https://doi.org/10.18632/oncotarget.8936

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tekirdag K, Cuervo AM (2018) Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J Biol Chem 293:5414–5424. https://doi.org/10.1074/jbc.R117.818237

    Article  CAS  PubMed  Google Scholar 

  143. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12:503–535. https://doi.org/10.1089/ars.2009.2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Torisu K, Singh KK, Torisu T, Lovren F, Liu J, Pan Y, Quan A, Ramadan A, Al-Omran M, Pankova N, Boyd SR, Verma S, Finkel T (2016) Intact endothelial autophagy is required to maintain vascular lipid homeostasis. Aging Cell 15:187–191. https://doi.org/10.1111/acel.12423

    Article  CAS  PubMed  Google Scholar 

  145. Vara D, Pula G (2014) Reactive oxygen species: physiological roles in the regulation of vascular cells. Curr Mol Med 14:1103–1125

    Article  CAS  PubMed  Google Scholar 

  146. Verheye S, Martinet W, Kockx MM, Knaapen MW, Salu K, Timmermans JP, Ellis JT, Kilpatrick DL, De Meyer GR (2007) Selective clearance of macrophages in atherosclerotic plaques by autophagy. J Am Coll Cardiol 49:706–715. https://doi.org/10.1016/j.jacc.2006.09.047

    Article  CAS  PubMed  Google Scholar 

  147. Vion AC, Kheloufi M, Hammoutene A, Poisson J, Lasselin J, Devue C, Pic I, Dupont N, Busse J, Stark K, Lafaurie-Janvore J, Barakat AI, Loyer X, Souyri M, Viollet B, Julia P, Tedgui A, Codogno P, Boulanger CM, Rautou PE (2017) Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proc Natl Acad Sci USA 114:E8675–e8684. https://doi.org/10.1073/pnas.1702223114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang L, Yu T, Lee H, O'Brien DK, Sesaki H, Yoon Y (2015) Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia. Cardiovasc Res 106:272–283. https://doi.org/10.1093/cvr/cvv005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang YT, Li X, Chen J, McConnell BK, Chen L, Li PL, Chen Y, Zhang Y (2019) Activation of TFEB ameliorates dedifferentiation of arterial smooth muscle cells and neointima formation in mice with high-fat diet. Cell Death Dis 10:676. https://doi.org/10.1038/s41419-019-1931-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wei H, Liu L, Chen Q (2015) Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochem Biophys Acta 1853:2784–2790. https://doi.org/10.1016/j.bbamcr.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  151. Wei T, Huang G, Gao J, Huang C, Sun M, Wu J, Bu J, Shen W (2017) Sirtuin 3 deficiency accelerates hypertensive cardiac remodeling by impairing angiogenesis. J Am Heart Assoc. https://doi.org/10.1161/jaha.117.006114

    Article  PubMed  PubMed Central  Google Scholar 

  152. Widlansky ME, Gutterman DD (2011) Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 15:1517–1530. https://doi.org/10.1089/ars.2010.3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Williams MD, Van Remmen H, Conrad CC, Huang TT, Epstein CJ, Richardson A (1998) Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem 273:28510–28515

    Article  CAS  PubMed  Google Scholar 

  154. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861. https://doi.org/10.1074/jbc.M109.080796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wu W, Xu H, Wang Z, Mao Y, Yuan L, Luo W, Cui Z, Cui T, Wang XL, Shen YH (2015) PINK1-Parkin-mediated mitophagy protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury. PLoS ONE 10:e0132499. https://doi.org/10.1371/journal.pone.0132499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wu NN, Tian H, Chen P, Wang D, Ren J, Zhang Y (2019) Physical exercise and selective autophagy: benefit and risk on cardiovascular health. Cells. https://doi.org/10.3390/cells8111436

    Article  PubMed  PubMed Central  Google Scholar 

  157. Xiao Q, Che X, Cai B, Tao Z, Zhang H, Shao Q, Pu J (2020) Macrophage autophagy regulates mitochondria-mediated apoptosis and inhibits necrotic core formation in vulnerable plaques. J Cell Mol Med 24:260–275. https://doi.org/10.1111/jcmm.14715

    Article  CAS  PubMed  Google Scholar 

  158. Xie Y, You SJ, Zhang YL, Han Q, Cao YJ, Xu XS, Yang YP, Li J, Liu CF (2011) Protective role of autophagy in AGE-induced early injury of human vascular endothelial cells. Mol Med Rep 4:459–464. https://doi.org/10.3892/mmr.2011.460

    Article  CAS  PubMed  Google Scholar 

  159. Xu K, Yang Y, Yan M, Zhan J, Fu X, Zheng X (2010) Autophagy plays a protective role in free cholesterol overload-induced death of smooth muscle cells. J Lipid Res 51:2581–2590. https://doi.org/10.1194/jlr.M005702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Xu Q, Li X, Lu Y, Shen L, Zhang J, Cao S, Huang X, Bin J, Liao Y (2015) Pharmacological modulation of autophagy to protect cardiomyocytes according to the time windows of ischaemia/reperfusion. Br J Pharmacol 172:3072–3085. https://doi.org/10.1111/bph.13111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yamamoto K, Imamura H, Ando J (2018) Shear stress augments mitochondrial ATP generation that triggers ATP release and Ca(2+) signaling in vascular endothelial cells heart and circulatory physiology. Am J Physiol. https://doi.org/10.1152/ajpheart.00204.2018

    Article  Google Scholar 

  162. Yan Y, Finkel T (2017) Autophagy as a regulator of cardiovascular redox homeostasis. Free Radical Biol Med 109:108–113. https://doi.org/10.1016/j.freeradbiomed.2016.12.003

    Article  CAS  Google Scholar 

  163. Young A, Wu W, Sun W, Benjamin Larman H, Wang N, Li YS, Shyy JY, Chien S, Garcia-Cardena G (2009) Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression. Arterioscler Thromb Vasc Biol 29:1902–1908. https://doi.org/10.1161/atvbaha.109.193540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yu EPK, Reinhold J, Yu H, Starks L, Uryga AK, Foote K, Finigan A, Figg N, Pung YF, Logan A, Murphy MP, Bennett M (2017) Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. Arterioscler Thromb Vasc Biol 37:2322–2332. https://doi.org/10.1161/atvbaha.117.310042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang YL, Cao YJ, Zhang X, Liu HH, Tong T, Xiao GD, Yang YP, Liu CF (2010) The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochem Biophys Res Commun 394:377–382. https://doi.org/10.1016/j.bbrc.2010.03.026

    Article  CAS  PubMed  Google Scholar 

  166. Zhang Y, Morgan MJ, Chen K, Choksi S, Liu ZG (2012) Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119:2895–2905. https://doi.org/10.1182/blood-2011-08-372383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang JX, Qu XL, Chu P, Xie DJ, Zhu LL, Chao YL, Li L, Zhang JJ, Chen SL (2018) Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation. Biochimica et biophysica acta. Mol Cell Res 1865:709–720. https://doi.org/10.1016/j.bbamcr.2018.02.005

    Article  CAS  Google Scholar 

  168. Zhao K, Xu XS, Meng X, Li YL, Li JF, Chen WQ (2013) Autophagy of monocytes attenuates the vulnerability of coronary atherosclerotic plaques. Coron Artery Dis 24:651–656. https://doi.org/10.1097/mca.0000000000000035

    Article  PubMed  Google Scholar 

  169. Zhou W, Chen KH, Cao W, Zeng J, Liao H, Zhao L, Guo X (2010) Mutation of the protein kinase A phosphorylation site influences the anti-proliferative activity of mitofusin 2. Atherosclerosis 211:216–223. https://doi.org/10.1016/j.atherosclerosis.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  170. Zhou L, Ma B, Han X (2016) The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy. J Mol Endocrinol 57:R143–r152. https://doi.org/10.1530/jme-16-0086

    Article  CAS  PubMed  Google Scholar 

  171. Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Investig 117:1782–1793. https://doi.org/10.1172/jci27523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. https://doi.org/10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health Grants T32GM089586 and AHA 20POST35050017 (W.E.H); R01-HL-133029 (A.M. Beyer); R01-HL-135901-01 (D.D. Gutterman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Hughes.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hughes, W.E., Beyer, A.M. & Gutterman, D.D. Vascular autophagy in health and disease. Basic Res Cardiol 115, 41 (2020). https://doi.org/10.1007/s00395-020-0802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-020-0802-6

Keywords

Navigation