Skip to main content
Log in

Effect of Alkyl Chain Length of Amines on the Micro-structural and Magnetic Properties of Stabilized Ni-NiO Nanoparticles

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Different long-chain primary alkylamines such as octylamine, dodecylamine, tetradecylamine, hexadecylamine or octadecylamine were used to stabilize Ni-NiO nanoparticles (metal:stabilizer ratio of 1:10) by an organometallic method in organic medium to evaluate their effect on the microstructural and magnetic properties. The Ni-NiO stabilized nanoparticles were characterized by Fourier transformed infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), conventional transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and dynamic light scattering (DLS). The results indicated an adequate stabilization of Ni nanoparticles with the different primary alkylamines. The semi-quantitative analysis suggests that Ni surface composition is a combination of the metallic state with NiO, NiOOH and NiO, but the chain length modified the content and proportion of these compounds. The highest Ni metallic state (57.2 at. %) was obtained with tetradecylamine as stabilizer. The morphology of the samples is similar to a core–shell semi-spherical, but the particle size tends to reduce with the alkyl chain length of primary amines from 20 to 8 nm. The saturation magnetization (Ms) showed important variations depending on the surface composition, for which variable particle size and Ni metallic content were determining factors for the magnetic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. V.H. Grassian, When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C 112, 18303 (2008). https://doi.org/10.1021/jp806073t

    Article  CAS  Google Scholar 

  2. L. Tang, X. Li, R.C. Cammarata, C. Friesen, K. Sieradzki, Electrochemical stability of elemental metal nanoparticles. J. Am. Chem. Soc. 132, 11722 (2010). https://doi.org/10.1021/ja104421t

    Article  CAS  PubMed  Google Scholar 

  3. E. Adadan, S. Akaygun, A. Sanyal, Size-dependent properties of matter: Is the size of a pill important? Sci. Act. 54, 86 (2017). https://doi.org/10.1080/00368121.2017.1395790

    Article  Google Scholar 

  4. Y.T. Jeon, J.Y. Moon, G.H. Lee, J. Park, Y. Chang, Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J. Phys. Chem. B 110, 1187 (2006). https://doi.org/10.1021/jp054608b

    Article  CAS  PubMed  Google Scholar 

  5. E.H. Lee, M.K. Lee, C.K. Rhee, Preparation and characterization of stable dispersions of Ni nanoparticles. Mater. Sci. Forum 534–536, 117 (2007). https://doi.org/10.4028/www.scientific.net/MSF.534-536.117

    Article  Google Scholar 

  6. A.C. Gandhi, J.G. Lin, Magnetic resonance study of exchange-biased Ni/NiO nanoparticles. J. Phys. Condens. Matter 29, 215802 (2017). https://doi.org/10.1088/1361-648X/aa6a7c

    Article  PubMed  Google Scholar 

  7. T. Ishizaki, K. Yatsugi, K. Akedo, Effect of particle size on the magnetic properties of Ni nanoparticles synthesized with trioctylphosphine as the capping agent. Nanomaterials (2016). https://doi.org/10.3390/nano6090172

    Article  PubMed  PubMed Central  Google Scholar 

  8. Y. Li, Y. Li, T. Wang, The size and shape dependence of ferromagnetism in nanomagnets. J. Nanomater. 2012, 897203 (2012). https://doi.org/10.1155/2012/897203

    Article  CAS  Google Scholar 

  9. T. da Câmara Santa Clara Gomes, N. Marchal, F. Abreu Araujo, L. Piraux, Magnetically Activated Flexible Thermoelectric Switches Based on Interconnected Nanowire Networks, Adv. Mater. Technol., 7, 2101043 (2022). Doi: https://doi.org/10.1002/admt.202101043

  10. U. Khan, A. Nairan, M. Irfan, S. Naz, D. Wu, J. Gao, Magnetic properties of Ni/BiFeO3 hybrid nanostructures. J. Alloys and Compd 912, 165133 (2022). https://doi.org/10.1016/j.jallcom.2022.165133

    Article  CAS  Google Scholar 

  11. Z. Firdouz, P. Tripathi, K. Mondal, K. Balani, Effect of carbonaceous reinforcements on anticorrosive and magnetic properties of Ni-Cu based composite coatings prepared by pulsed electrodeposition. Surf. Coat. Technol 44, 128560 (2022). https://doi.org/10.1016/j.surfcoat.2022.128560

    Article  CAS  Google Scholar 

  12. J. García, A.M. Manterola, M. Méndez, J.A. Fernández-Roldán, V. Vega, S. González, V.M. Prida, Magnetization reversal process and magnetostatic interactions in Fe56Co44/SiO2/Fe3O4 core/shell ferromagnetic nanowires with non-magnetic interlayer. Nanomaterials (2021). https://doi.org/10.3390/nano11092282

    Article  PubMed  PubMed Central  Google Scholar 

  13. I. Baskaran, T.S.N. SankaraNarayanan, A. Stephen, Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties. Mater. Lett. 60, 1990 (2006). https://doi.org/10.1016/j.matlet.2005.12.065

    Article  CAS  Google Scholar 

  14. E. Ramírez-Meneses, I. Betancourt, F. Morales, V. Montiel-Palma, C.C. Villanueva-Alvarado, M.E. Hernández-Rojas, Superparamagnetic nickel nanoparticles obtained by an organometallic approach. J. Nanopart. Res. 13, 365 (2011). https://doi.org/10.1007/s11051-010-0039-7

    Article  CAS  Google Scholar 

  15. K. Guo, H. Li, Z. Yu, Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane. ACS Appl. Mater. Interfaces 10, 517 (2018). https://doi.org/10.1021/acsami.7b14166

    Article  CAS  PubMed  Google Scholar 

  16. K. Mette, S. Kühl, A. Tarasov, M.G. Willinger, J. Kröhnert, S. Wrabetz, A. Trunschke, M. Scherzer, F. Girgsdies, H. Düdder, K. Kähler, K.F. Ortega, M. Muhler, R. Schlögl, M. Behrens, T. Lunkenbein, High-temperature stable Ni nanoparticles for the dry reforming of methane. ACS Catal. 6, 7238 (2016). https://doi.org/10.1021/acscatal.6b01683

    Article  CAS  Google Scholar 

  17. V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.-G. Lee, T. Yoon, K.S. Kim, Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 7, 7196 (2017). https://doi.org/10.1021/acscatal.7b01800

    Article  CAS  Google Scholar 

  18. P. Thamilmaran, M. Arunachalam, S. Sankarrajan, K. Sakthipandi, Impact of Ni doping on La0.7Sr0.3NixMn1−xO3 perovskite manganite materials. J. Magn. Magn. Mater. 396, 181 (2015). https://doi.org/10.1016/j.jmmm.2015.08.028

    Article  CAS  Google Scholar 

  19. H.-J. Song, X.-H. Jia, X.-F. Yang, H. Tang, Y. Li, Y.-T. Su, Controllable synthesis of monodisperse polyhedral nickel nanocrystals. Cryst. Eng. Commun. 14, 405 (2012). https://doi.org/10.1039/C1CE05899A

    Article  CAS  Google Scholar 

  20. S. Banik, A. Mahajan, S. Bhattacharya, Size control synthesis of pure Ni nanoparticles and anodic-oxidation of butan-1-ol in alkali. Mater. Chem. Phys. 235, 121747 (2019). https://doi.org/10.1016/j.matchemphys.2019.121747

    Article  CAS  Google Scholar 

  21. B. Rana, A. Barman, Ultrafast magnetization dynamics of chemically synthesized Ni nanoparticles. J. Phys. Chem. C 119, 17444 (2015). https://doi.org/10.1021/acs.jpcc.5b04759

    Article  CAS  Google Scholar 

  22. K. Nouneh, M. Oyama, R. Diaz, I. Kityk, M. Bousmina, Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches. J. Alloys Compd 509, 5882 (2011). https://doi.org/10.1016/j.jallcom.2011.02.164

    Article  CAS  Google Scholar 

  23. M. Chen, Y. Wu, S. Zhou, L. Wu, Shape-controllable synthesis of crystalline Ni complex particles via AOT-based microemulsions. J. Phys. Chem. B 112, 6536 (2008). https://doi.org/10.1021/jp711932h

    Article  CAS  PubMed  Google Scholar 

  24. S. Chandra, A. Kumar, P.K. Tomar, Synthesis of Ni nanoparticles and their characterizations. J. Saudi Chem. Soc. 18, 437 (2014). https://doi.org/10.1016/j.jscs.2011.09.008

    Article  CAS  Google Scholar 

  25. K.S. Rao, T. Balaji, Y. Lingappa, M.R.P. Reddy, T.L. Prakash, Chemical synthesis and magnetic properties of HCP and FCC nickel nanoparticles. Phase Transit. 85, 235 (2012). https://doi.org/10.1080/01411594.2011.608255

    Article  CAS  Google Scholar 

  26. Y. Guo, M. Azmat, X. Liu, J. Ren, G. Lu, Controllable synthesis of hexagonal close-packed nickel nanoparticles under high nickel concentration and its catalytic properties. J. Mater. Sci. 46, 4606 (2011). https://doi.org/10.1007/s10853-011-5360-8

    Article  CAS  Google Scholar 

  27. H. Wang, X. Jiao, D. Chen, Monodispersed nickel nanoparticles with tunable phase and size: synthesis, characterization, and magnetic properties. J. Phys. Chem. C 112, 18793 (2008). https://doi.org/10.1021/jp805591y

    Article  CAS  Google Scholar 

  28. S. Carenco, C. Boissière, L. Nicole, C. Sanchez, P. Le Floch, N. Mézailles, Controlled design of size-tunable monodisperse nickel nanoparticles. Chem. Mater. 22, 1340 (2010). https://doi.org/10.1021/cm902007g

    Article  CAS  Google Scholar 

  29. K. Donegan, J. Godsell, D. Otway, M. Morris, S. Roy, J. Holmes, Size-tuneable synthesis of nickel nanoparticles. J. Nanoparticle Res. 14, 670 (2012). https://doi.org/10.1007/s11051-011-0670-y

    Article  CAS  Google Scholar 

  30. N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, B. Chaudret, Synthesis and magnetic properties of nickel nanorods. Nano Lett. 1, 565 (2001). https://doi.org/10.1021/nl0100522

    Article  CAS  Google Scholar 

  31. S. Mourdikoudis, V. Collière, C. Amiens, P. Fau, M.L. Kahn, Metal-organic pathways for anisotropic growth of a highly symmetrical crystal structure: example of the fcc Ni. Langmuir 29, 13491 (2013). https://doi.org/10.1021/la402001t

    Article  CAS  PubMed  Google Scholar 

  32. Y. Pan, R. Jia, J. Zhao, J. Liang, Y. Liu, C. Liu, Size-controlled synthesis of monodisperse nickel nanoparticles and investigation of their magnetic and catalytic properties. Appl. Surf. Sci. 316, 276 (2014). https://doi.org/10.1016/j.apsusc.2014.07.203

    Article  CAS  Google Scholar 

  33. X. Liu, M. Guo, M. Zhang, X. Wang, X. Guo, K. Chou, Effects of PVP on the preparation and growth mechanism of monodispersed Ni nanoparticles. Rare Met. 27, 642 (2008). https://doi.org/10.1016/S1001-0521(08)60198-9

    Article  CAS  Google Scholar 

  34. Z. Liu, Z. Li, F. Wang, J. Liu, J. Ji, J. Wang, W. Wang, S. Qin, L. Zhang, Synthesis of multi-walled carbon nanotube supported nickel catalysts by hydrazine reduction and their electrocatalytic activity on ethanol electro-oxidation. Mater. Lett. 65, 3396 (2011). https://doi.org/10.1016/j.matlet.2011.07.068

    Article  CAS  Google Scholar 

  35. Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21, 1778 (2009). https://doi.org/10.1021/cm802978z

    Article  CAS  Google Scholar 

  36. M. Shviro, D. Zitoun, Nickel nanocrystals: fast synthesis of cubes, pyramids and tetrapods. RSC Adv. 3, 1380 (2013). https://doi.org/10.1039/C2RA22024E

    Article  CAS  Google Scholar 

  37. Y. Chen, D.-L. Peng, D. Lin, X. Luo, Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18, 505703 (2007). https://doi.org/10.1088/0957-4484/18/50/505703

    Article  CAS  Google Scholar 

  38. L.M. Moreau, D.-H. Ha, C.R. Bealing, H. Zhang, R.G. Hennig, R.D. Robinson, Unintended phosphorus doping of nickel nanoparticles during synthesis with TOP: a discovery through structural analysis. Nano Lett. 12, 4530 (2012). https://doi.org/10.1021/nl301642g

    Article  CAS  PubMed  Google Scholar 

  39. M.A. Domínguez-Crespo, E. Ramírez-Meneses, V. Montiel-Palma, A. Torres-Huerta, H. Dorantes-Rosales, Synthesis and electrochemical characterization of stabilized nickel nanoparticles. Int. J. Hydrogen Energy 34, 1664 (2009). https://doi.org/10.1016/j.ijhydene.2008.12.012

    Article  CAS  Google Scholar 

  40. N. Cordente, C. Amiens, B. Chaudret, M. Respaud, F. Senocq, M.J. Casanove, Chemisorption on nickel nanoparticles of various shapes: influence on magnetism. J. Appl. Phys. 94, 6358 (2003). https://doi.org/10.1063/1.1621081

    Article  CAS  Google Scholar 

  41. C.M. Sánchez-Sánchez, J. Solla-Gullón, F.J. Vidal-Iglesias, A. Aldaz, V. Montiel, E. Herrero, Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J. Am. Chem. Soc. 132, 5622 (2010). https://doi.org/10.1021/ja100922h

    Article  CAS  PubMed  Google Scholar 

  42. E. Ramirez, S. Jansat, K. Philippot, P. Lecante, M. Gomez, A.M. Masdeu-Bultó, B. Chaudret, Influence of organic ligands on the stabilization of palladium nanoparticles. J. Org. Chem. 689, 4601 (2004). https://doi.org/10.1016/j.jorganchem.2004.09.006

    Article  CAS  Google Scholar 

  43. L. Edwards, P. Mack, D.J. Morgan, Recent advances in dual mode charge compensation for XPS analysis. Surf. Interface Anal. 51, 925 (2019). https://doi.org/10.1002/sia.6680

    Article  CAS  Google Scholar 

  44. M.A. Domínguez-Crespo, E. Ramírez-Meneses, A.M. Torres-Huerta, V. Garibay-Febles, K. Philippot, Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni–Pt nanoparticles obtained by an organometallic approach. Int. J. Hydrog. Energy 37, 4798 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.109

    Article  CAS  Google Scholar 

  45. E. Ramirez, L. Eradès, K. Philippot, P. Lecante, B. Chaudret, Shape control of platinum nanoparticles. Adv. Funct. Mater. 17, 2219 (2007). https://doi.org/10.1002/adfm.200600633

    Article  CAS  Google Scholar 

  46. C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy, P. Lecante, M.-J. Casanove, Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. J. Am. Chem. Soc. 123, 7584 (2001). https://doi.org/10.1021/ja003961m

    Article  CAS  PubMed  Google Scholar 

  47. D. Zhang, G. Li, J. Yu, Synthesis of size-tunable monodispersed metallic nickel nanocrystals without hot injection. Cryst. Growth Des. 9, 2812 (2009). https://doi.org/10.1021/cg900063q

    Article  CAS  Google Scholar 

  48. Y. Hou, S. Gao, Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J. Mater. Chem. 13, 1510 (2003). https://doi.org/10.1039/B303226D

    Article  CAS  Google Scholar 

  49. S.T. Assar, H.F. Abosheiasha, Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples. J. Magn. Magn. Mater. 374, 264 (2015). https://doi.org/10.1016/j.jmmm.2014.08.011

    Article  CAS  Google Scholar 

  50. N. Lenin, K. Sakthipandi, R.R. Kanna, J. Rajesh, Effect of neodymium ion on the structural, electrical and magnetic properties of nanocrystalline nickel ferrites. Cer. Int. 44, 11562 (2018). https://doi.org/10.1016/j.ceramint.2018.03.218

    Article  CAS  Google Scholar 

  51. A.R. Kagdi, N.P. Solanki, F.E. Carvalho, S.S. Meena, P. Bhatt, R.C. Pullar, R.B. Jotania, Influence of Mg substitution on structural, magnetic and dielectric properties of X-type bariumzinc hexaferrites Ba2Zn2-xMgxFe28O46. J. Alloys Compd. 741, 377 (2018). https://doi.org/10.1016/j.jallcom.2018.01.092

    Article  CAS  Google Scholar 

  52. E. Ressouche, N. Kernavanois, L.-P. Regnault, J.-Y. Henry, Magnetic structures of the metal monoxides NiO and CoO re-investigated by spherical neutron polarimetry. Physica B 385–386, 394 (2006). https://doi.org/10.1016/j.physb.2006.05.082

    Article  CAS  Google Scholar 

  53. J.I. Betancourt R, H.A. Davies, Effect of the grain size on the magnetic properties of nanophase REFeB alloys. J. Magn. Mag. Mater 246, 6 (2002). https://doi.org/10.1016/S0304-8853(01)00922-2

    Article  CAS  Google Scholar 

  54. S.J. Blundell, Micromagnetism and the Microstructure of Ferromagnetic Solids, by Helmut Kronmüller and Manfred Fähnle. Contemp. Phys. 52, 157 (2011). https://doi.org/10.1080/00107514.2010.534181

    Article  Google Scholar 

  55. M. Helmut Kronmüller, Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge Studies in Magnetism), 1st, Edition. (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  56. Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894 (2017). https://doi.org/10.1038/s41598-017-09897-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005). https://doi.org/10.1016/j.physrep.2005.08.004

    Article  Google Scholar 

  58. T.S. Soliman, S.A. Vshivkov, S.I. Elkalashy, Structural, linear and nonlinear optical properties of Ni nanoparticles—polyvinyl alcohol nanocomposite films for optoelectronic applications. Opt. Mater. 107, 110037 (2020). https://doi.org/10.1016/j.optmat.2020.110037

    Article  CAS  Google Scholar 

  59. M.A. Amrani, H.A. Alrafai, S.Y. Al-nami, N.K. Labhasetwar, A. Qasem, Effect of mixing on nickel tartrate and Ni/NiO core/shell nanoparticles: Implications for morphology, magnetic, optical, dielectric and adsorption properties. Opt. Mater. 127, 112321 (2022). https://doi.org/10.1016/j.optmat.2022.112321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support provided by Dirección de Investigación-Universidad Iberoamericana through the postdoctoral and INIAT F145021 projects, FICSAC, the Instituto Politécnico Nacional through the SIP2022-0668, -0671, -1153, -1155, and -0244 projects; CONACyT CB2015-252181 and 157613 projects; as well as SNI-CONACyT.

Funding

This study was funded by Universidad Iberoamaericana, Instituto Politécnico Nacional and Consejo Nacional de ciencia y tecnología de México.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission approved the version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. LPAG-O: conceptualization, methodology, formal analysis. ER-M: conceptualization, methodology, formal analysis, resources, writing—review & editing. IB: supervision, magnetic characterization. LL-R: XPS analyses, revision—original draft. RM-C: characterization-supervision. AMT-H: formal analysis, resources, writing—review & editing, supervision, funding acquisition. MAD-C: conceptualization, writing—original draft, methodology, formal analysis, resources, writing—review & editing.

Corresponding authors

Correspondence to E. Ramírez-Meneses or M. A. Domínguez-Crespo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Ortega, L.P.A., Ramírez-Meneses, E., Betancourt, I. et al. Effect of Alkyl Chain Length of Amines on the Micro-structural and Magnetic Properties of Stabilized Ni-NiO Nanoparticles. J Inorg Organomet Polym 33, 368–382 (2023). https://doi.org/10.1007/s10904-022-02506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02506-7

Keywords

Navigation