Skip to main content
Log in

Extraction of extraradical arbuscular mycorrhizal mycelium from compartments filled with soil and glass beads

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

This study presents a novel method for the extraction and quantification of extraradical mycelium (ERM) of arbuscular mycorrhizal fungi (AMF) from a substrate that simulates soil better than previously used artificial growth media. Fungal compartments were constructed from small net pots with a latticed wall and filled with a mixture of glass beads and 40 μm wet sieved soil. The net pots were surrounded by a 30-μm mesh membrane through which hyphae but not roots could grow. They were inserted into soil where a Glomus intraradices (BEG 110) colonized potato plant was growing. The ERM that had grown out from roots through the membrane was successfully collected and quantified after harvest by washing out the soil/glass bead mixture through a sieve with a mesh width of 40 μm. Concentrations of P, Zn, Cu and Mn in the AMF ERM were analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addy HD, Miller MH, Peterson RL (1997) Infectivity of the propagules associated with extraradical mycelia of two AM fungi following winter freezing. New Phytol 135:745–753

    Google Scholar 

  • Bago B, Azcón-Aguilar C, Piché Y (1998a) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62

    Google Scholar 

  • Bago B, Azcón-Aguilar C, Goulet A, Piché Y (1998b) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–388

    Article  Google Scholar 

  • Boddington CL, Dodd JC (1998) A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes. Mycorrhiza 8:149–157

    Google Scholar 

  • Caris C, Hördt W, Hawkins H-J, Römheld V, George E (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35–39

    Google Scholar 

  • Chen BD, Christie P, Li X-L (2001) A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42:185–192

    Article  CAS  PubMed  Google Scholar 

  • Chen BD, Li X-L, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Google Scholar 

  • Cui M, Caldwell MM (1996) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches I. Roots and hyphae exploiting the same soil volume. New Phytol 133:453–460

    Google Scholar 

  • Ezawa T, Cavagnaro TR, Smith SE, Smith AF, Ohtomo R (2003) Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytol 161:387–392

    Google Scholar 

  • Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A (2001) A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant Soil 235:211–219

    Google Scholar 

  • Gericke S, Kurmies B (1952) Die colorimetrische Phosphorsäurebestimmung mit Ammonium-Vanadat–Molybdat und ihre Anwendung in der Pflanzenanalyse. Z Pflanzenernähr Bodenkd 159:11–21

    Google Scholar 

  • Graham JH, Lindermann RG, Menge JA (1982) Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of Troyer Citrange. New Phytol 91:183–189

    Google Scholar 

  • Hanssen JF, Thingstad TF, Gohsøn J (1974) Evaluation of hyphal lengths and fungal biomass in soil by a membrane filter method. Oikos 25:102–107

    Google Scholar 

  • Hawkins H-J, George E (1997) Hydroponic culture of the mycorrhizal fungus Glomus mosseae with Linum usitatissimum L., Sorghum bicolor L. and Triticum aestivum L.. Plant Soil 196:143–149

    Google Scholar 

  • Hawkins H-J, George E (2001) Reduced N-15-nitrogen transport through arbuscular mycorrhizal hyphae to Triticum aestivum L. supplied with ammonium vs. nitrate nutrition. Ann Bot 87:303–311

    Google Scholar 

  • Hung L-LL, Sylvia DM (1988) Production of vesicular arbuscular mycorrhizal fungus inoculum in aeroponic culture. Appl Environ Microbiol 54:353–357

    Google Scholar 

  • Jakobsen I, Abbott K, Robson AD (1992) External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

    Google Scholar 

  • Jentschke G, Brandes B, Heinzemann J, Marschner P, Godbold D (1999) Sand culture of mycorrhizal plants. J Plant Nutr Soil Sci 162:107–112

    Google Scholar 

  • Kabir Z, Koide RT (2002) Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA. Plant Soil 238:205–215

    Article  CAS  Google Scholar 

  • Kormanik P, McGraw AC (1982) Quantification of vesicular–arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principals of mycorrhizal research. The American Phytopathological Society, St. Paul, MN, pp 37–45

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131:177–185

    CAS  Google Scholar 

  • Li X-L, Christie P (2001) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42:201–207

    Google Scholar 

  • Li X-L, George E, Marschner H (1991a) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Google Scholar 

  • Li X-L, Marschner H, George E (1991b) Acquisition of phosphorus and copper by VA mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Google Scholar 

  • Li X-L, George E, Marschner H (1991c) Phosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilised with ammonium. New Phytol 119:397–404

    CAS  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Google Scholar 

  • Olsson PA, Wilhelmsson P (2000) The growth of external AM fungal mycelium in sand dunes and in experimental systems. Plant Soil 226:161–169

    Google Scholar 

  • Olsson PA, Jakobsen I, Wallander H (2003) Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Ecological studies, vol 157. Springer, Berlin Heidelberg New York, pp 93–110

    Google Scholar 

  • Redecker D, Thierfelder H, Werner D (1998) Production of biomass of arbuscular mycorrhizal fungi in the glassbead compartment system. In: Varma AK (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 495–498

    Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel J-P, Belimov A, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Schinkel H (1984) Bestimmung von Calcium, Magnesium, Strontium, Kalium, Natrium, Lithium, Eisen, Mangan, Chrom, Nickel, Kupfer, Cobalt, Zink und Cadmium: Eine Universalvorschrift zur Untersuchung von Wässern, Kohlen, Aschen, Schlacken, Erzen, Gesteinen, Baustoffen, Metallen und ähnlichen Proben. Fresenius Z Anal Chem 317:10–26

    Google Scholar 

  • Schubert A, Marzachí C, Mazzitelli M, Cravero MC, Bonfante-Fasolo P (1987) Development of total and viable extraradical mycelium in the vesicular–arbuscular mycorrhizal fungus Glomus clarum Nicol. and Schenck. New Phytol 107:183–190

    Google Scholar 

  • Schüller H (1969) Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates im Boden. Z Pflanzenernähr Bodenkd 123:48–63

    Google Scholar 

  • Solaiman MZ, Saito M (2001) Phosphate efflux from intraradical hyphae of Gigaspora margarita in vitro and its implication for phosphorus translocation. New Phytol 151:525–533

    Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995–1001

    Google Scholar 

  • Vilariño A, Arines J, Schüepp H (1993) Extraction of vesicular–arbuscular mycorrhizal mycelium from sand samples. Soil Biol Biochem 25:99–100

    Google Scholar 

Download references

Acknowledgements

This work was financed by the EU MYCHINTEC INCO-DEV Project no ICA4-CT-2000-30014. E.G. received an ARC IREX Fellowship (in cooperation with Prof. Zed Rengel) during the initial phase of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elke Neumann or Eckhard George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, E., George, E. Extraction of extraradical arbuscular mycorrhizal mycelium from compartments filled with soil and glass beads. Mycorrhiza 15, 533–537 (2005). https://doi.org/10.1007/s00572-005-0361-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-005-0361-6

Keywords

Navigation