Skip to main content
Log in

Quantitative bioimaging of p-boronophenylalanine in thin liver tissue sections as a tool for treatment planning in boron neutron capture therapy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was developed and applied to assess enrichment of 10B-containing p-boronophenylalanine-fructose (BPA-f) and its pharmacokinetic distribution in human tissues after application for boron neutron capture therapy (BNCT). High spatial resolution (50 μm) and limits of detection in the low parts-per-billion range were achieved using a Nd:YAG laser of 213 nm wavelength. External calibration by means of 10B-enriched standards based on whole blood proved to yield precise quantification results. Using this calibration method, quantification of 10B in cancerous and healthy tissue was carried out. Additionally, the distribution of 11B was investigated, providing 10B enrichment in the investigated tissues. Quantitative imaging of 10B by means of LA-ICP-MS was demonstrated as a new option to characterise the efficacy of boron compounds for BNCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen FH (1996) J Trace Elem Exp Med 9:215

    Article  CAS  Google Scholar 

  2. Nielsen FH (2000) Nutrition 16:512–514

    Article  CAS  Google Scholar 

  3. Başaran N, Duydu Y, Bolt HM (2012) J Trace Elem Med Biol 26:165–167

    Article  Google Scholar 

  4. Barth RF, Vicente MGH, Harling OK, Kiger WS, Riley KJ, Binns PJ, Wagner FM, Suzuki M, Aihara T, Kato I, Kawabata S (2012) Radiat Oncol 7:146

    Article  Google Scholar 

  5. Coderre JA, Morris GM (1999) Radiat Res 151:1–18

    Article  CAS  Google Scholar 

  6. Lu X-Q, Kiger WS (2009) Radiat Res 171:646–656

    Article  CAS  Google Scholar 

  7. Tonarini S, Pennisi M, Adorni-Braccesi A, Dini A, Ferrara G, Gonfiantini R, Wiedenbeck M, Goning M (2003) Geostand Newslett 27:21–39

    Article  CAS  Google Scholar 

  8. Nyomora AMS, Sah RN, Brown PH, Miller RO (1997) Fresenius J Anal Chem 357:1185–1191

    Article  CAS  Google Scholar 

  9. Linko S, Revitzer H, Zilliacus R, Kortesniemi M, Kouri M, Savolainen S (2008) Scand J Clin Lab Inv 68:696–702

    Article  CAS  Google Scholar 

  10. Probst TU, Berryman NG, Lemmen P, Weissfloch L, Auberger T, Gabel D, Carlsson J, Larsson B (1997) J Anal Atom Spectrom 12:1115–1122

    Article  CAS  Google Scholar 

  11. Schmitz T, Appelman K, Kudejova P, Schütz C, Kratz JV, Moss R, Otto G, Hampel G (2011) Appl Radiat Isotopes 69:936–941

    Article  CAS  Google Scholar 

  12. Schütz CL, Brochhausen C, Hampel G, Iffland D, Kuczewski B, Otto G, Schmitz T, Stieghorst C, Kratz JV (2012) Anal Bioanal Chem 404:1887–1895

    Google Scholar 

  13. Evangelista L, Jori G, Martini D, Sotti G (2013) Appl Radiat Isotopes 74:91–101

    Article  CAS  Google Scholar 

  14. Porcari P, Capuani S, D’Amore E, Lecce M, La Bella A, Fasano F, Migneco LM, Campanella R, Maraviglia B, Pastore FS (2008) Phys Med Biol 53:6979–6989

    Article  CAS  Google Scholar 

  15. Michel J, Sauerwein W, Wittig A, Balossier G, Zierold K (2003) J Microsc 210:25–34

    Article  CAS  Google Scholar 

  16. Arlinghaus HF, Spaar MT, Switzer RC, Kabalka GW (1997) Anal Chem 69:3169–3176

    Article  CAS  Google Scholar 

  17. Chandra S, Tjarks W, Lorey DR, Barth RF (2008) J Microsc 229:92–103

    Article  CAS  Google Scholar 

  18. Chandra S, Barth RF, Haider S, Yang W, Huo T, Shaikh AL, Kabalka GW (2013) Biodistribution and subcellular localization of an unnatural boron-containing amino acid (Cis-ABCPC) by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas. PLoS ONE 8:1–9

    Google Scholar 

  19. Marchetti I, Menichetti L, Kusmic C, de las Heras LA, Salvadori P, Fuoco R, Belloni F, ĹAbbate A, Betti M (2009) Spectrochim Acta B 64:911–920

    Article  Google Scholar 

  20. Yokoyama K, Miyatake S-I, Kajimoto Y, Kawabata S, Doi A, Yoshida T, Okabe M, Kirihata M, Ono K, Kuroiwa T (2007) Radiat Res 167:102–109

    Article  CAS  Google Scholar 

  21. Kiger WS, Micca PL, Morris GM, Coderre JA (2002) Radiat Prot Dosim 99:409–412

    Article  CAS  Google Scholar 

  22. Bortolussi S, Pinto JM, Thorp SI, Farias RO, Soto MS, Sztejnberg M, Pozzi ECC, Gonzalez SJ, Gadan MA, Bellino AN, Quintana J, Altieri S, Miller M (2001) Appl Radiat Isotopes 69:1924–1927

    Article  Google Scholar 

  23. Portu A, Carpano M, Dagrosa A, Nievas S, Pozzi E, Thorp S, Cabrini R, Liberman S, Saint Martin G (2011) Appl Radiat Isotopes 69:1698–1701

    Article  CAS  Google Scholar 

  24. Portu A, Carpano M, Dagrosa A, Cabrini RL, Saint Martin G (2013) Biotech Histochem 88:217–221

    Article  CAS  Google Scholar 

  25. Schütz C, Brochhausen C, Altieri S, Bartholomew K, Bortolussi S, Enzmann F, Gabel D, Hampel G, Kirkpatrick CJ, Kratz JV, Minouchehr S, Schmidberger H, Otto G (2011) Radiat Res 176:388–396

    Article  Google Scholar 

  26. Becker JS, Dietze H-J (2000) Fresen J Anal Chem 368:23–30

    Article  CAS  Google Scholar 

  27. Pisonero J, Fernández B, Günther D (2009) J Anal Atom Spectrom 24:1145–1160

    Article  CAS  Google Scholar 

  28. Ghazi AM, Wataha J, O’Dell N, Singh B, Simmons R, Shuttleworth S (2002) J Anal Atom Spectrom 17:1295–1299

    Article  CAS  Google Scholar 

  29. Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C, Becker JS (2010) Mass Spectrom Rev 29:156–175

    CAS  Google Scholar 

  30. Pugh JAT, Cox AG, McLeod CW, Bunch J, Whitby B, Gordon B, Kalber T, White E (2011) J Anal Atom Spectrom 26:1667–1673

    Article  CAS  Google Scholar 

  31. Reifschneider O, Wehe CA, Diebold K, Becker C, Sperling M, Karst U (2013) J Anal Atom Spectrom 28:989–993

    Article  CAS  Google Scholar 

  32. Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Anal Chem 77:3208–3216

    Article  CAS  Google Scholar 

  33. Zoriy MV, Dehnhardt M, Matusch A, Becker JS (2008) Spectrochim Acta B 63:375–382

    Article  Google Scholar 

  34. Reifschneider O, Wehe CA, Raj I, Ehmcke J, Ciarimboli G, Sperling M, Karst U (2013) Metallomics 5:1440–1447

  35. Gabel D, Holstein H, Larsson B, Gille L, Ericson G, Sacker D, Som P, Fairchild RG (1987) Cancer Res 47:5451–5454

    CAS  Google Scholar 

Download references

Acknowledgments

Parts of this study were supported by the Cells in Motion Cluster of Excellence (CiM-EXC 1003), Münster, Germany (project FF-2013-17). The contribution of Christian L. Schütz was generously supported by a grant provided by the Boehringer Ingelheim Foundation (Ingelheim, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Additional information

Published in the topical collection Spectrochemical Plasmas for Clinical and Biochemical Analysis with guest editors Alfredo Sanz-Medel and María Montes Bayón.

Olga Reifschneider and Christian L. Schütz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reifschneider, O., Schütz, C.L., Brochhausen, C. et al. Quantitative bioimaging of p-boronophenylalanine in thin liver tissue sections as a tool for treatment planning in boron neutron capture therapy. Anal Bioanal Chem 407, 2365–2371 (2015). https://doi.org/10.1007/s00216-014-8012-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8012-4

Keywords

Navigation